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ABSTRACT 

 

     Oral submucous fibrosisis (OSMF) is a clinical condition of the oral cavity which is caused 

predominantly by areca nut consumption. This fibrotic condition affects almost all parts of the 

oral cavity and can cause significant reduction in mouth opening, thereby, resulting in functional 

impairment. The other potential risk of OSMF is its malignant transformation into oral squamous 

cell carcinoma, which occurs in a significant number of afflicted patients. Extensive researches 

have been conducted to understand the pathogenesis of OSMF for identification of tangible 

therapeutic modalities. To date, there is no effective therapeutic modality for this disorder. It is 

well known that melatonin has a potent anti-fibrotic, anti-oxidant, and pro-angiogenic effects. 

The therapeutic potential of melatonin on OSM cannot be ignored. In this article we have 

explored the potential mechanisms of melatonin as an adjuvant in the prevention and treatment  

of OSMF. 
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_____________________________________________________________________________ 

 

1. INTRODUCTION 

 

     Oral submucous fibrosis (OSMF) was first clinically identified in individuals of Asian 

descent as a  oral cavity disease with the potentiality of  malignant transformation (1). This  is an 

insidiously chronic disease that affects any part of the oral cavity and sometimes even the 

pharynx. It has several nomenclatures including  idiopathic scleroderma of mouth, idiopathic 

palatal fibrosis, sclerosing stomatitis and juxta-epithelial fibrosis (1). The hallmark of this  
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disease is the widely spreaded fibrosis of the oral mucosal tissue, which  causes  progressive 

trismus due to rigid lips at cheeks and dysphagia due to fibrosis of the upper third of the 

esophagus (2). The disease is mainly encountered in the Asian subcontinent and the prevalence is  

higher in India than other countries (2). OSMF was originally  reported by Schwartz in 1952 

when he examined five Indian women from Kenya. He initially coined the term “atrophic 

aidiopathica (tropica) mucosae oris” (3). Subsequently, in 1953, Joshi, another clinician from 

Mumbai renamed this disorder  as OSMF (4). It was also considered by some clinicians as a 

collagen disorder of the oral tissues in the last decade (5, 6). The commonly  accepted definition 

of OSMF is that it is an insidious chronic disease affecting any part of the oral cavity and 

sometimes pharynx, although, occasionally preceded by and/or associated with vesicle formation 

and always associated with juxta-epithelial inflammatory reaction followed by fibroblastic 

changes in the lamina propria with epithelial atrophy leading to stiffness of the oral mucosa 

causing trismus and difficulty in eating (7). 

     A large proportion of patients have difficulty to  consume  spicy food, mouth toughness,  lack 

of laxity of lip, tongue, and palate leading to difficulty in mouth opening. The disease is 

prevalent in countries where individuals have betel chewing habit. Arecoline present in areca nut 

has been confirmed to be the principal factor in causing this  disease (1). The habit of betel quid 

chewing is characterized by the consumption of piper betel vine leaf- wraps in which fragments 

of areca nut, slaked lime, and tobacco are packed. During this process  arecoline is released from 

the areca nut to initiate OSMF.  However, multiple factors also promote the etiopathogenesis of 

OSMF and they are discussed below. 

 

2. PATHOGENESIS OF OSMF 

 

2.1.  Areca nut consumpation induced inflammation and role of inflammatory cytokines 

and enzymes. 

 

     Areca nut chewing initially causes an acute inflammatory reaction that can be aggravated by 

co-consumption of slaked lime. Interaction of areca nut contained components with the 

polymorphonuclear cells (PMCs) causes increased production of reactive oxygen species (ROS) 

(8).  ROS, then, increases the nuclear factor kappa B (NFkB) expression which, in turn, up-

regulates pro-inflammatory cytokines such as interleukin 1 beta (IL-1β), tumor necrosis factor-

alpha (TNF-α) and proinflammatory enzyme, cyclooxygenases leading to juxta-epithelial fibrosis 

(9, 10). The sustained inflammatory response and the alterred  collagen and collagenase 

production caused by  TNF-α play the significant roles in OSM pathogenesis (11). Genetic 

studies have demonstrated that individuals with  homozygous wild genotype TNF-α2 have the 

increased risk of OSMF and  the mutant allele TNF-α2 has 7 times greater intensity in enhancing  

promoter function in comparison with wild allele. Hence, TNF-α could be considered to play a 

pivotal role in OSMF pathogenesis (11). The cyclooxygenase 2 (COX2) is  another important 

factor influenced by arecoline. An immunohistochemical study on OSMF tissue showed the 

upregulated expression of  COX2 compared to control, highlighting the relationship  between  

cyclooxygenase and the pathogenesis of OSMF (12). This  has also been observed  in an in vitro 

study of  oral keratinocytes in which arecoline treatment  was found to upregulate COX2  

expression and prostaglandin production (13).  
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2.2. Role of oxidative stress and cell cycle related proteins. 

 

     Ample evidence  points out the role of oxidative stress in OSMF. An increased level of 

biomarkers related to oxidative stress and depleted antioxidant status are often  observed in 

OSMF(14, 15). Oxidative stress damages  macromolecules including  lipids, proteins and  DNA. 

For example, arecoline  induces  DNA damage. Human keratinocytes treated with areca nut 

extracts  significantly increases the  level of 8 hydroxydeoxy guanosine, thus, highlighting the 

arecoline induced oxidative DNA damage (16). With regard to the genotoxicity,  arecoline  also 

causes cell cycle disruption. In an in vitro  study,  arecoline administration  inhibits epithelial cell 

proliferation and survival by  inhibition of G1/S phase regulatory proteins cyclin D1, (appears in 

the G1 phase of the cell cycle) CDK4, CDK2 and E2F1 (expressed in the late G1 to S transition 

phase). The mentioned mechanisms above have a significant impact on epithelial atrophy 

observed in OSMF lesions (17). 

 

2.3. Role of immune cells. 

 

     The immune cells also involved in the  OSMF pathogenesis including mast cells and 

Langerhans cells (LCs). The LCs are dendritic, non-keratinocyte clear cells located in the supra-

basal layer of the oral mucosal epithelium and are the well established antigen-presenting cells 

(APCs). An immunohistochemical study has demonstrated the increased numbers of LCs in oral 

tissue of patients with OSMF compared to healthy individuals (18). It suggests that LCs may 

recognize  areca nut constituents as foreign antigens through MHC class 2 and  present these 

antigens  to lymphocytes to trigger a specific immune response. Histopathological studies have 

also reported an increased density of mast cells in oral submucous fibrosis (19), suggesting their 

role in cytokine production, especially, the transforming growth factor-alpha (TNF-α) that may 

accentuate fibrosis. 

 

2.4. Role of transcription factors and growth factors. 

 

     Concerning the role of transcription factors other than NFkB in OSMF pathogenesis, SMAD-

2 (mothers against decapentaplegic homolog 2) deserves special attention. Epithelial cells treated 

with catechin, tannin, and alkaloids have higher level of  SMAD-2 phosphorylation than that of 

the untreated controls (20). In addition, ALK5, JNK, and p38 MAPK pathways also participate 

in  the pathobiology of OSMF (21, 22). The signaling pathways mentioned above culminate in 

the increased expression of growth factors such as TGF-beta, IGF-1, b-FGF, and CTGF. It has 

been reported that arecoline promotes production of alpha 5 - beta 6 (α5-β6) integrin which, in 

turn, upregulates TGF-β expression in oral tissues (23). TGF-β is a key molecule involved in 

OSMF pathogenesis and its  signaling as the main predisposing factor for synthesis of collagen 

in OSMF has been elucidated by the global gene expression profiles induced by TGF-β in 

epithelial cells isolated from the oral cavity (20). Oral epithelial cells exposed to  aqueous extract 

of areca nut containing polyphenols and alkaloids share 64% similarity with those treated by 

TGF-β, in regard to their  gene expression  patterns (20). It is  understandable  since  arecoline 

causes induction of TGF-β expression in oral epithelial cells, this finally leads to the onset of 

tissue fibrosis. Indeed,TGF-β predominates during the early stages of OSMF and becomes less 

abundant with the progression of the condition (20). Studies conducted on OSMF patients 

revealed an upregulated b-FGF expression in the fibroblasts during the early phase of 
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inflammation. This indicates that bFGF is associated with the initial injury caused  by the 

exposure to arecoline. bFGF further stimulates the release of other pro-inflammatory cytokines 

that exacerbates fibrosis (24). The b-FGF also  increases  during the progression of the OSMF 

and it is strongly expressed in  the stromal cells as the disease progresses (24). The expression of 

bFGF, however, declines in the fibroblasts and endothelial cells with the progress  of OSMF  

(24). A significant up-regulation of insulin growth factor-1 (IGF-1) expression at levels of 

mRNA and protein in OSMF has been reported and  attributed to arecoline in a dose-dependent 

manner (25). The induction and further progression of fibrosis in  human oral tissues are also  

associated with connective tissue growth factor (CTGF) which increases level in OSMF 

compared to healthy oral tissues, at the onset and during the advanced stages of fibrosis (26). 

 

2.5. Role of MMP and heat shock proteins. 

 

     OSMF  is also  termed as a collagen disorder (5, 6). In light  with this, the role of matrix 

metalloproteinases (MMPs) needs to be addressed.  These zinc-dependent metalloproteinases 

degrade collagen while tissue inhibitors of matrix metalloproteinases (TIMPs) are found to 

inhibit collagen degradation. It has been found that the imbalance between MMPs and TIMPs in 

OSMF occurs with the reduced expression of MMP1. In one hand, MMP1 degrades fibrillary 

collagen, on the other hand, it  significantly increases the expression of TIMP, as a result, to 

prevent collagen degradation (27). The net result is to increase collagen accumulation causing 

exacerbated extracellular matrix deposition. It has also been found that the heat shock proteins 

(HSPs) which are involved in pro-collagen secretion are also over-expressed in OSMF. The 

increased HSP47 expression in OSMF at levels of the mRNA and protein has been reported (28). 

The increased HSP47 expression  coupled with increased malondialdehyde (MDA) production 

are attributed to  increased collagen cross-linking in OSMF (29).  

 

2.6. Role of copper.  

 

     Another important enzyme, involved in collagen cross-linking and extracellular matrix 

organization, is lysyl oxidase. This enzyme is a copper-dependant enzyme. It is noteworthy that 

areca nut extracts are copper-rich and hence elevates copper levels in saliva in habitual chewers 

(30). Consequently, the copper ions are absorbed into the buccal mucosa and increase lysyl 

oxidase activity thereby leading to increased collagen cross-linking and extracellular matrix 

components in OSMF(30).  

 

2.7. Role of autoimmune activity.  

 

     An autoimmune basis in OSMF pathogenesis has been proposed (9). The histologic 

resemblance of the oral submucous fibrosis lesions with scleroderma, an autoimmune disorder, 

has shed light on  a possible role of autoimmunity in the pathogenesis of OSMF. The expression 

of CCL2 as a common marker in both scleroderma and oral submucous fibrosis has been 

reported. Autoantibodies against the antinuclear antigen, smooth muscle antigen, gastric parietal 

cell antigen and thyroid microsomal antigens in patients with oral submucous fibrosis have been 

reported (9). Increased levels of salivary and serum IgA, IgG levels in oral submucous fibrosis 

patients further support the concept of autoimmunity in OSMF pathogenesis (31). 
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2.8. Role of renin angiotensin system and endothelin. 

 

     It is well known that a tissue renin-angiotensin system exists in the oral tissue (32). 

Angiotensin2, the effector peptide of the system, causes profibrotic action  in oral fibroblasts 

mediated through the receptor AT-1(33). One of the important tissue convertors of Angiotensin 1 

to 2 is mast cell chymase (34). Notably,  mast cells are accumulated  in OSMF (19). Hence, the 

increased chymase level will cause overexpression of Angiotensin2 to mediate profibrotic 

activity. Another significant molecule implicated in fibrosis is endothelin1 which is a 21 amino 

acid-containing peptide and it also has  profibrotic activity (35). A clinical study has implicated 

higher endothelin 1 level in saliva samples of patients with oral submucous fibrosis compared to 

healthy subjects (36).  

 

2.9. Role of epithelial mesenchymal transition.  

 

     Epithelial-mesenchymal transition (EMT) is another important phenomenon that has been 

implicated in OSMF (37). This mechanism functions in both physiological and pathological 

situations. EMT denotes the phenotypic conversion of epithelial cells into myofibroblast-like 

cells after the loss and gain of certain molecular markers. In connection with OSMF,  EMT may 

play a major role in this disorder. Cell injury caused by Areca Nut Extracts (ANE) produces 

aberrant amounts of ROS which in turn triggers both MAPK and NF-κB pathways involved in 

EMT (37). Furthermore, the  upregulated expression of TGF beta in OSMF is sufficient to 

explain the basis of EMT as TGF beta is a key molecule in triggering EMT. Epithelial-

mesenchymal transition as an event predisposing to OSMF is also supported by the presence of 

myofibroblast-like cells in OSMF tissues (38). 

 

2.10. Malignant transformation of OSMF. 

 

     OSMF as a potential premalignant disorder significantly increases the rate of malignant 

transformation. Areca nut is a carcinogen with cytotoxic and genotoxic properties due to its 

component arecoline (39). The presence of high copper content in areca nut also is an important 

issue of concern since copper levels in saliva are elevated in oral cancer patients (30). The 

induction of oxidative stress with the consequential generation of ROS and other toxicity  species 

along with aberrant inflammation by areca nut extracts could also predispose to malignant 

transformation of OSMF. The up-regulation of proliferation markers like PCNA (40) and Ki 67 

(41) in OSMF demonstrate an inclination of this lesion towards malignant transformation. 

Another important molecule, hypoxia-inducible factor1 (HIF1), is also over-expressed in OSMF. 

HIF1 plays a critical role in the malignant transformation of OSMF lesions (42). 

 

3. TREATMENT MODALITIES FOR OSMF 

 

     Considering the  morbidity and malignant transformation of OSMF it is important to establish 

the effective treatments for this disorder. A plethora of treatment options have been tested 

practically and threotically. These include  the use of antioxidants (43), herbal extracts with 

antifibrotic activity (44), intralesional steroid and enzyme injections (45), a few to mention. 

Surgical excision of the fibrotic bands that result in restricted mouth opening have also been 

implemented (46). Specifically to antioxidant therapy as an adjuvant in OSMF management, 
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several antioxidants have been tested. Out of these antioxidants, lycopene deserves attention. 

Lycopene is  initially suggested as a potential antioxidant in the management of OSMF (47). 

Clinical study  has  proven the long term efficacy of lycopene in the treatment of OSMF (48). 

Lycopene is a structurally  symmetrical tetraterpene consisting of 8 component isoprene units, 

comprising 11 conjugated and 2 non-conjugated double bonds between the component carbon 

atoms (49). It is a member of the carotenoid family and is an important phytoconstituent of 

tomato. Lycopene detoxifies ROS including  singlet oxygen (50) and hypochlorous acid (51). 

Compared to lycopene, melatonin is a more potent antioxidant with anti-inflammatory and 

immunoregulatory activity (52, 53). Thus, we hypothesize that melatonin may exhibit beneficial 

effects in  in the management of OSMF. The mechanisms will be discussed below.  

 

4. MELATONIN: A BRIEF INSIGHT 

 

     Melatonin is a low molecular weight indoleamine produced and secreted principally by the 

pinealocytes of pineal gland  in vertebrate (54). A complex biochemical pathway underlies the 

biosynthesis of melatonin from its precursor tryptophan. The enzymes that are involved in the 

biosynthetic pathway are tryptophan-5-hydroxylase, 5-hydroxytryptophan decarboxylase, 

Arylalkylamine N-acetyltransferase (AANAT), and hydroxy indole-O-methyltransferase 

(HIOMT, currently the ASMT) (55). Melatonin is also synthesized in extra-pineal sites (56). In 

the oral cavity, the salivary glands (57) and the gingival tissues (58) are documented sites of 

melatonin production. The receptors  of melatonin are also present in the oral cavity and in the 

gingiva (58). It has been well documented that melatonin is a potent antioxidant (52) and an anti-

inflammatory agent (53) apart from its function as a regulator of circadian rhythm (59). The 

antioxidant potential of melatonin is  superior to conventional antioxidants such as vitamin A, E 

and C. It is to be emphasized  that melatonin can protect cells against oxidative damage more 

efficiently than other antioxidants under in vivo conditions (60). Melatonin and its secondary and 

tertiary metabolites are endowed with the potential to neutralize numerous toxic oxygen 

metabolites. By this mechanism, one melatonin molecule can scavenge up to ten  ROS versus 

many classic antioxidants that scavenge one. The products (or metabolites) of melatonin 

interaction  with ROS and reactive nitrogen species (RNS)  retain their capacity to continue 

scavenging free radicals. Several studies have reported that the melatonin metabolite, cyclic-3-

hydroxymelatonin, is more efficient than melatonin to scavenge the hydroxyl radical and other 

ROS (61). This is also the matter of fact for its tertiary metabolites, AMK and AFMK (62). With 

regard to its anti-inflammatory and immunomodulatory activity, melatonin  inhibits activation of 

NF-kappa B, retards LPS-stimulated TNF-α, IL-1β, IL-6, IL-8 and IL-10 production in 

Raw264.7 cells through a mechanism involving downregulation of NF-κB activation (63). 

Melatonin has also been found to inhibit LPS-induced COX-2 and inducible nitric oxide 

synthase (iNOS) protein levels in the murine macrophage cell line Raw264.7 (64). Given the 

antixodant, antiinflammatory and immunomodulatory role of melatonin, it could be considered a 

key player in the treatment of many human diseases.  

 

5. THE HYPOTHESIS 

 

     We hypothesize that melatonin could play a very significant role in the alleviation of the 

pathogenesis of OSMF. In addition to its activity mentioned above,  melatonin is also  a potent 

anti-fibrotic molecule (65). The beneficial effects of melatonin in ameliorating fibrosis have been 
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extensively documented (66). An extensive literature search has demonstrated that melatonin  

intervenes in many mechanisms that promote  the pathogenesis of OSMF. This has been 

corroborated from the evidence of melatonin actions in other models of fibrosis. These data are  

summarized in Table 1. To help better understanding of the potential mechanisms  of melatonin 

as an antifibrotic molecule in the context of OSMF pathogenesis are illustrated  in figure 1. 

 

Table 1: Summary of evidence for the therapeutic potential of melatonin in fibrotic conditions. 

 

Distinct events in the 

pathogenesis of OSMF 

Evidence of melatonin’s protection against  fibrosis in 

variety of  tissues 

 

Oxidative stress and depleted 

antioxidants 

Reduction in the level of malondialdehyde in a rat model of 

carbon tetrachloride-induced liver fibrosis (67). Reduction in 

malondialdehyde levels and increases in the levels of 

glutathione and superoxide dismutase in a 

dimethylnitrosamine induced liver fibrosis in rats (68). 

Increased levels of pro-

inflammatory cytokines like 

IL 1 beta and TNF alpha 

Reduction in the levels of IL-1β, TNF-α, and IL-6 in 

thioacetamide-induced liver fibrosis in rats(69).  

Increased levels of arecoline 

mediated COX-2 production 

Reduction in COX-2expression in bleomycin induced lung 

fibrosis model in mice (65). 

Increased levels of oxidative 

DNA and production of  

8 hydroxy deoxyguanosine 

Reduction in 8 hydroxy deoxyguanosine levels in gray and 

white matter of mice subjected to focal cerebral ischemia 

(70). 

Increase and dysregulation in  

numbers of Langerhans cells 

and mast cells 

Reduction of mast cell degranulation in the dermis of the rat 

model upon injection thereby preventing the release of mast 

cell granule contents (71). Normalization of the circadian 

rhythm and controlled Langerhans and dendritic cell 

trafficking in blood and skin(72). 

Increased expression of NF 

kappa B 

Reduction in the expression of NF kappa B in a rat model of 

carbon tetrachloride-induced liver fibrosis (67).  

Increased expression of 

SMAD, MAPK, JNK, P38 

Reduction of SMAD expression in carbon tetrachloride-

induced hepatic fibrosis (73)in rats. 

Reduction of MAPK expression of renal injury and fibrosis 

(74) and JNK and p38 expression in carbon tetrachloride-

induced hepatic fibrosis model in rats (75). 

Increased expression of TGF 

beta 

Attenuation of TGF beta expression in models of hepatic and 

renal fibrosis by inhibiting SMAD, MAPK, JNK, and p38 

expression (73-75). 

Increased expression of  

b FGF 

Reducion in the expression of TGF beta and b FGF in a nerve 

anastomoses model thereby reducing scarring and fibrosis at 

the nerve ends of pinealectomized animals (76). 

Increased expression of CTGF Significant reduction in the expression of CTGF in carbon 

tetrachloride-induced hepatic fibrosis model in mice (77). 

Reduction in MMP levels and 

increased TIMP levels 

Significantly lowering the levels of MMP9 and TIMP1 in 

carbon tetrachloride-induced hepatic fibrosis in mice (78). 
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Increased levels of copper Mitigation of copper-induced oxidative damage in rat liver 

homogenates (79). 

Management of Wilson's disease due to its copper chelating 

properties (80). 

Autoimmunity phenomenon Clinical improvement in multiple sclerosis, systemic lupus 

erythematosus, and rheumatoid arthritis through effects on 

immunoenhancement and inhibition of autoantibody 

production (81). 

Increased expression of 

Angiotensin 2 

Amelioration of chronic kidney damage and fibrosis induced 

by Angiotensin 2 (82). 

Increased expression of 

endothelin 1 

Reducionof synthesis and expression of endothelin 1 in a 

colon cancer cell line predominantly through NF kappa B 

inhibition (83). 

Role of EMT Inhibition of EMT  induced by TGF beta 1 in lung alveolar 

epithelial cells (84). 

Up-regulation of proliferation 

markers such as PCNA and Ki 

67 implicating malignant 

transformation 

Reduction in PCNA and Ki 67 expression thereby exerting 

antiproliferative effects in prostate cancer cell lines (85). 

Up-regulation of hypoxia-

inducible factor 1 alpha (HIF-

1α) implicating malignant 

transformation 

Inhibition of tumor angiogenesis in colon cancer cell lines by 

downregulating HIF-1α expression (86). 

 

 

Figure 1: The potentially protective mechanisms of melatonin on  OSMF pathogenesis.    
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6. CONCLUSION 

 

     Data from the table 1 and illustration from figure 1 summarize the potential mechanisms of  

melatonin  to retard fibrotic formation  in variety of  organs and tissues. These include  its effect 

on oxidative stress, inflammation, and immune regulation (69). Melatonin  modulates enzymes 

related to inflammation such as COX-2 (65) and  related to matrix remodelling such as matrix 

metalloproteinases and their tissue inhibitors (78). Moreover, melatonin is a potent modulator of 

transcription factors including SMAD, MAPK, JNK, p38 (73, 74). Through modulation of 

downstream signalling pathways of these transcription factors melatonin suppresses activities of 

growth factors including  TGF beta, b FGF and CTGF. These growth factors promote  OSMF 

pathogenesis (75-77). Melatonin can chelate transition  metal, copper, to reduce its toxicity and 

mitigates its pivotal role in OSMF pathogenesis (79, 80). With regard to the autoimmune activity 

which predispose to OSMF, melatonin can suppress this activity as it does in many other 

autoimmune conditions (81). Melatonin can target  renin angiotensin system and endothelin and 

its receptors which play a key role in OSMF pathogenesis (82, 83). OSMF favors the malignant 

transformation. Melatonin inhibits epithelial-mesenchymal transition phenomenon to provent 

this  malignant conversion of OSMF (84). Morover, melatonin inhibits the signaling pathway of 

HIF-1α to prevent malignant transformation of lesions (86) and, thus, lowers the the malignant 

transformation rate of OSMF (85). All these  provide compelling evidence for a potential 

therapeutic role of melatonin  in OSMF. It is well established that salivary glands and gingival 

tissues can synthesize melatonin (58), which in turn is secreted into saliva. However, with 

increased inflammation and oxidative stress induced by areca nut chewing, the endogenous 

melatonin levels could be depleted thereby eliminating its protective effects. In this regard, using 

melatonin locally in the form of lozenges, gummies, mouth-washes, gel, and ora-base could 

potentially be of significant effect in the prevention and adjuvant management of OSMF. 
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