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ABSTRACT 

 

     The onset and progression of baneful chronic diseases are often accompanied by 

a torrent of uncontrolled inflammatory reactions. Although inflammation is a natural 

response to detect, eliminate, and counterpoise the harmful insults to physiological 

integrity, a persistent inflammation causes tissue damage or more serious disorders, for 

example, the atherosclerosis and myocardial infarction. Inflammation often occurs in 

the cardiovascular system, but are also caused by other disorders including metabolic 

syndrome, autoimmune diseases, AIDS, and cancer that can affect the cardiac health. 

To effectively treat heart diseases a potent remedy is necessary which not only 

suppresses the inflammation but also prevents inflammation-associated cardio-

pathogenesis. The ubiquitous antioxidant molecule melatonin has both anti-

inflammatory and cardioprotective activities. Melatonin executes its anti-inflammatory 

activity by its antioxidant function or by targeting multiple intracellular signalling 

cascades such as modulating cytokine profile, blocking inflammasome activation and 

apoptosis. Lipid dysregulation and endothelial dysfunction that play a crucial role in 

the pathogenesis of atherosclerosis, insulin resistance, and diabetes are prevented by 

melatonin. Attenuation of mitochondrial and ER stress by melatonin is also pertinent to 

its cardioprotective action. Additionally, melatonin by its immuno-stimulatory activity 

can suppress inflammaging and immuno-senescence in HIV patients and thereby averts 

chronic inflammation-induced cardiovascular abnormality in these subjects. 

Modulation of cytokine profile and decrease in MMP-9 secretion by melatonin is 

beneficial in autoimmune conditions. In addition to its anti-tumour potency, melatonin 

can reduce chemotherapy-induced cardio-toxicity in cancer patients. This review, 

therefore, provides a concise summary of the currently available information 

appertaining to the roles of melatonin in mitigation of chronic inflammation and its 

effect on cardiovascular integrity. 
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1. INTRODUCTION 

 

     The internal homeostasis of organisms is frequently threatened by various toxic 

and pathogenic agents as well as the malfunctions of endogenous molecular processes. 

These noxious challenges can lead to inevitable tissue injury or even lethal outcome in 

organisms. Therefore, organisms, in course of evolution, have developed a well-

integrated defence machinery that aims to neutralize the injurious stimuli and thereby 

to restore functional harmony in the affected tissue. A good example is the 

inflammatory system. Inflammation is a healing process; however, its overreaction can 

lead to detrimental consequences. In some cases, the latter often outweighs the 

beneficial effect of this innate immune process (1). 

Evidence derived from epidemiological studies indicates that the cardiovascular 

diseases often emerge ensuing a chronic inflammatory state (2). Various hallmarks of 

inflammation are often associated with menacing cardiovascular events including 

atherosclerosis (3), myocardial infarction, and cardiac arrest (4). The aetiology can be 

explained by the fact that cardiac tissue is enriched with mitochondria which are both 

a source as well as the victim of oxidative stress. The tremendous metabolic activity of 

the heart requires a huge oxygen supply yet the relatively low levels of antioxidant 

capacity make the heart vulnerable to oxidative stress and concomitant inflammatory 

injury (5). Many chronic disorders including diabetes, obesity, autoimmune diseases, 

and cancer are associated with sustained low-grade inflammation that adversely affects 

the cardiovascular system, leading to cardiomyopathies, that originate independent of 

the traditional cardiovascular risk factors (6). 

Animals, especially, mammals, are well equipped to combat the nocuous effect of 

persistent inflammatory reactions. The cellular antioxidant repertoire represents a 

checkpoint in the trajectory of inflammation-induced pathologies. This evokes the 

demand for selecting a suitable antioxidant to target inflammation (7). One such 

endogenous molecule is melatonin (N-acetyl-5-methoxytryptamine), a potent 

antioxidant and a powerful anti-inflammatory agent. It protects the cells against 

uncontrolled inflammation by modulating both pro- and anti-inflammatory processes 

(8). Cardioprotective actions of this indoleamine are usually mediated by the receptor-

independent mechanism, whereby the amphiphilic feature allows it to pass through the 

biological membrane to achieve on-site protection inside the cells (9). Melatonin also 

exerts its action on cardiovascular system by interacting with its receptors localized in 

the cardiac and endothelial cells (10-11). In addition, systemic inflammatory reactions 

caused by chronic illnesses are efficiently prevented by melatonin, thus arresting the 

imminent attack on the cardiovascular tissues (12). Melatonin not only inhibits the 

persistent migration of leukocytes (13) but also suppresses the production of reactive 

oxygen species (ROS) (14), prevents lipid oxidation and resultant lipotoxicity (15), 

inhibits inflammasome activation (16), up-regulates the antioxidant, anti-inflammatory 

(17), and anti-apoptotic genes while minimizing the release of pro-inflammatory 

cytokines and pro-apoptotic proteins (18). An in-depth description encompassing the 

modalities of inflammation and the target points of melatonin in various signalling 

events within the cardiovascular tissue will be discussed in this review. 

 

2. INFLAMMATION AND INFLAMMATORY DISEASES 

 

     Inflammation is a pathophysiological response of the body to infection or injury 

in which the various components of the immune system co-ordinately activate a series 

of signalling processes and regulate the levels of mediator molecules in the host tissue 
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in an attempt to ameliorate tissue damage (1, 19). The non-immune and immune cells 

express surface receptors known as pattern recognition receptors (PRR) that have 

affinity for foreign agents as well as damaged self-substances such as mitochondrial 

DNA, cardiolipin and other structures released by the injured cells. PRR recognize the 

pathogens and damaged self-molecules via their pathogen associated molecular 

patterns (PAMP) and danger associated molecular patterns (DAMP), respectively (20, 

21). Their interactions activate a series of signalling events known as inflammatory 

responses. Toll-like receptors (TLR) are among the most conserved and well explored 

member of the PRR family and are known to trigger intracellular pathways that activate 

a range of transcription factors such as the nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFκB), mitogen-activated protein kinase (MAPK) and interferon 

regulatory factor 3 (IRF-3) (22-24). These transcription factors translocate into the 

nucleus to mediate gene expression of a set of pro-inflammatory and anti-inflammatory 

cytokines and chemokines. Tumour Necrosis Factor alpha (TNF-α) and Interleukin-1 

beta subtype (IL-1β) are the first pro-inflammatory molecule to be secreted which 

perpetuates the molecular cascade of inflammatory reactions resulting in activation of 

transcription factors and generation of other cytokines and proteins that control 

apoptosis (25). Other important pro-inflammatory markers including IL-1α, IL-6, IL-8, 

macrophage inflammatory protein 1-α (MIP-1α), interferons (IFN), colony stimulating 

factors and transforming growth factors (TGF) (26-27) are also recruited during 

inflammation. However, inflammatory mechanism is not solely characterized by the 

release of pro-inflammatory cytokines, rather anti-inflammatory molecules have a vital 

role in dampening of aggressive immune reactions. An impairment in the anti-

inflammatory response locally may culminate in a pernicious inflammatory state at the 

systemic level which may have detrimental results such as multi-organ dysfunction 

syndrome, septic shock, and mortality (25). In addition, inflammation associated 

oxidative stress can also activate NFκB, MAPK and JAK-STAT (Janus Kinase-Signal 

Transducer and Activator of Transcription) pathways to generate inflammatory 

cytokines and chemokines that make the situation worse (28). Trauma and oxidative 

stress increase the activity of some proinflammatory enzymes such as nitric oxide 

synthase, xanthine oxidase, cyclooxygenase, lipoxygenase, and NADH/NADPH 

oxidases (19, 29). All these events pave the way for the development of a plethora of 

inflammatory diseases such as autoimmune conditions, Acquired Immune Deficiency 

Syndrome (AIDS), metabolic syndrome and cancer which will be discussed below in 

detail. 

 

2.1. Inflammatory autoimmune disorders. 

 

     Autoimmune diseases involve a broad range of inflammatory conditions that 

arise due to a breach in immune tolerance leading to ignition of immune response 

against self-molecules, a condition that is either limited to a specific organ or evolves a 

systemic disorder (30). Interestingly, basal level of auto-reactivity of the T and B cells 

to self-antigens is not considered as a pathological sign and is indispensable for the 

survival of mature T cells in the peripheral blood. However, the decreased threshold of 

the activation of lymphocytes at the genetic level evokes immune reactivity against self-

molecules (31). Additionally, external factors such as infection, certain xenobiotics and 

trauma may also induce or exacerbate autoimmune response (30). A current evidence 

has documented that a dysregulated inflammatory state may be associated with the 

pathogenesis of autoimmune disorders (32). The common autoimmune diseases 

characterized by chronic inflammation include rheumatoid arthritis, systemic lupus 
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erythematosus, systemic sclerosis, type-1 diabetes, psoriasis, inflammatory bowel 

disease and autoimmune thyroid conditions. 

 

2.2. Human Immunodeficiency Virus (HIV) infection and AIDS. 

 

     Human Immunodeficiency Virus infection and AIDS is manifested by persistent 

immune activation that result in chronic inflammatory status allowing continuous viral 

replication, gradual cell death, loss of immune function and inflammation-associated 

degenerative diseases (33, 34). Although the emergence of combinational anti-

retroviral therapy has reduced AIDS-related mortality, yet prolonged viral suppressive 

treatment escalates the risk of non-AIDS-related morbidity including cardiovascular 

pathogenicity (35-36).  

HIV antigens interact with CD4+ and CD8+ lymphocytes leading to profuse 

secretion of pro-inflammatory cytokines and chemotactic agents including IL-1β, IL-6, 

TNF-α, IFN-α, MIP-1α, chemokine ligands (CXCL-9, CXCL-10 and CCL-2), and cell 

adhesion molecules (CAM) such as ICAM and VCAM. This results in excessive 

activation of T cells, their decreased half-lives, exhaustion of T cells during viral 

encounter and apoptosis-mediated depletion of T cell pool (37-40). Further, with the 

progressive viremia, the optimally functional B cells, dendritic cells, and natural killer 

(NK) cells are compromised resulting in utmost immune system imbalance and 

premature immuno-senescence (41). 

 

2.3. Metabolic syndrome. 

 

     The World Health Organization (WHO) has proposed that metabolic syndrome 

comprises of multiple clinical features with insulin resistance and/or diabetes mellitus 

being the hallmark disorder along with at least two of the following abnormalities which 

include hypertension, abnormal plasma lipid profile, abdominal obesity and increased 

urinary albumin excretion (42). Manifestation of insulin resistance in adipocytes 

abolishes the antilipolytic action of insulin, thereby increases circulating free fatty acids 

(FFA) which further amplifies insulin resistance in adipose tissue (43). Additionally, 

plasma FFA has deleterious impact on insulin homeostasis due to lipotoxicity-mediated 

pancreatic beta cell destruction (44).  

The cardiovascular component of metabolic syndrome has its pathogenetic basis in 

the chronic inflammatory mechanisms that are instigated by insulin resistance (45). The 

adipose tissues are responsible for the up-regulation of pro-inflammatory pathways by 

secretion of inflammation promoting adipokines such as chemerin and leptin along with 

the release of other pro-inflammatory mediators including IL-8, monocyte chemotactic 

protein (MCP)-1, and C-reactive protein (CRP)(46-47). Besides, adipose tissue resident 

macrophages also release inflammatory molecules viz., TNF-α which phosphorylates 

and inactivates insulin receptor in both smooth muscle cells and adipocytes contributing 

to elevated FFA release into the circulatory pool (48). TNF-α is responsible for down-

regulation of adiponectin, an anti-inflammatory molecule produced by adipocytes that 

enhance insulin sensitivity (48, 49). Additionally, IL-6 secreted by the immune cells 

and adipose tissue up-regulates the production of fibrinogen and CRP in the liver 

(49,50). Increased circulatory fibrinogen concentration is associated with 

prothrombotic condition in patients with metabolic syndrome (49). 
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2.4. Cancer. 

 

     Chronic inflammation often associates to carcinogenesis of the inflamed tissue. 

The immuno-pathogenic facets of cancer progression are often observed from the 

biopsiesthat display a panoply of inflammatory cells in the tumour microenvironment 

(51). The mechanistic nexus between inflammation and cancer can be explained by two 

pathways― the intrinsic and the extrinsic pathways. Several mutational events 

engendering the activation of oncogenes, deactivation of tumour-suppressor genes, and 

initiate the intrinsic pathway leading to neoplastic growth and associated inflammatory 

changes, even in cases without any history of inflammatory disorders (52). On the other 

hand, extrinsic pathway operates when carcinogenesis is attributable to a pre-existing 

inflammatory condition. However, both the pathways are connected to a common 

inflammatory mechanism that involves activation of NFκB, JAK-STAT, and HIF-1α 

(Hypoxia-inducible factor 1α)-mediated cytokine and chemokine production (52). One 

crucial chemokine molecule secreted by the neoplastic tissue is the MCP which plays a 

significant role in attracting monocytes that transform into tumour associated 

macrophages (TAM) (53). Although TAM may exhibit mild anti-malignant effect by 

inducing IL-12, IL-2 expression and consequent natural killer cell activation, it also 

involves in tumour growth and metastasis which makes TAM a major culprit in cancer 

progression (54, 55). Experimentally, TAM have been demonstrated to produce several 

pro-angiogenic growth factors such as transforming growth factor-β (TGF-β), 

epidermal growth factor, platelet derived growth factor, vascular endothelial growth 

factors and their receptors along with the production of several extracellular proteases 

and pro-inflammatory cytokines including IL-1, IL-6, and TNF-α (56, 57). In addition 

to macrophages, other immune cells including neutrophils, eosinophils, mast cells, and 

T lymphocytes produce chemotactic molecules, pro-angiogenic factors, and matrix 

degrading proteases that augment neoplastic development (53). 

 

3. HEART AND THE VASCULAR SYSTEM AS VICTIMS OF CHRONIC 

INFLAMMATION  

 

     Inflammation significantly contributes to the pathogenesis of atherosclerosis and 

other cardiovascular morbidity. Orchestration of a number of inflammatory signalling 

pathways forms a crucial link between atheroma formation and associated 

cardiovascular complications including myocardial infarction. The notion regarding the 

involvement of inflammatory mediators in atherogenesis is strengthened by the 

observation that LDL lowering drugs seem inefficient in fully impeding the 

atherosclerotic process (3). Additionally, therapeutic interventions targeting 

inflammation have shown outstanding improvement in the prognosis of patients 

suffering from arteriosclerotic heart disease (3). Atherogenic diet which causes 

lipotoxicity in the arterial tissue is considered to be an initial step in the development 

of atherogenic plaque. The lipids accumulating in the arterial wall are prone to pro-

oxidation due to the fact that the arterial intima isa shield to the direct   exposure to 

blood antioxidants (58). These oxidized lipoproteins are trapped locally and 

phospholipids are responsible for NFκB-mediated transcription of VCAM-1 in the 

endothelial cells (58-61). Circulating monocytes attach to the VCAMs on the surface 

of the endothelial cells undergoing diapedeses along the gradient of chemokine MCP-

1 (3, 62). Lymphocytes also penetrate in the sub-endothelial area in response to 

lymphocyte specific chemo-attractants [interferon-γ (IFN-γ)-inducible chemokines of 

the CXC family] (63). Monocytes assembling within the tunica intima constitute the 
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tissue macrophages which then engulf the oxidized lipoprotein to form arterial foam 

cells. These foam cells release free radicals and cytokines that augment the pro-

inflammatory response (3, 62). The lymphocytes interact with oxidized lipoproteins 

and heat shock proteins to produce cytokines that facilitate activation of other cells 

including foam cells (62). Consequently, matrix metalloproteinases (MMPs) are 

released from the foam cells. MMPs break down extracellular matrix proteins and 

weaken the fibrous covering around the plaque; thus, lead to vascular rupture. When 

the plaque splits open the tissue factor (factor-III) released by plaque resident 

leukocytes is exposed to blood to form thrombosis with the dying macrophages to 

constitute the central necrotic core of the atheroma (3, 62). 

An atherosclerotic lesion formed in the coronary artery can often result in arterial 

occlusion and the consequent ischemic cardiac injury. Acute myocardial ischaemia, 

infarction and reperfusion injury involve the activation of innate and adaptive immune 

responses that promote oxidative stress, inflammation, apoptosis, and transient or 

permanent loss of cardiac function (64, 65). Recruitment of inflammatory factors is 

indispensable at the onset of acute cardiac infarction. These factors can aid in the 

removal of dead cells and cellular debris from the site of infarction (66, 67). The 

necrotic cardiomyocytes, fibroblasts, interstitial cells and the endothelial cells trigger 

innate immune response by releasing damaged DNA, proteins, and lipids. These 

substances are then recognized as DAMP by the TLR receptors expressed by 

cardiomyocytes, endothelial cells, and the immune cells (68). This culminates in the 

activation of NFκB signalling and upregulation of several other cytokine and 

chemokine molecules (69,70). The chemotactic signals contribute to the directed 

migration of leukocytes to the site of infarction. DAMPS can further activate the 

complement cascade and inflammasomes in the infarct area (70, 71). This triggers the 

release of pro-inflammatory cytokines including IL-1, IL-6 and IL-18 and instigates 

pyroptosis of cardiomyocytes (70). Further, ROS generated from dysfunctional 

mitochondria of the infarct zone exacerbates the inflammatory process through 

activation of complement pathway and secretion of chemokines and cell adhesion 

molecules (68). 

    Strong evidence has demonstrated that chronic inflammation, such as rheumatoid 

arthritis, is associated with carotid arteriosclerosis, and increased risk of myocardial 

infarction and strokes even in patients without conventional cardiovascular risk factors 

(72-74). Several inflammatory cytokines including IL-1β, IL-6, IL-7, and TNF-α are 

hallmarks of atherosclerotic conditions to be detected in the plasma of animals with 

rheumatoid arthritis (75, 76). Activation of inflammatory cascades which contributes 

to the immuno-pathogenesis of systemic lupus erythematosus also promotes 

cardiovascular complications including dyslipidaemia and atherosclerosis, peripheral 

arterial occlusion, coronary artery disease, and stroke (77-79). Cardiac dysfunction with 

impaired ventricular contractility and altered diastolic function along with greater 

incidence of myocardial infarction have been observed in systemic sclerosis patients 

(80). Inflammatory bowel disease (IBD) which includes two chronic inflammatory 

conditions of the gut― Crohn’s disease and ulcerative colitis can predispose 

individuals to atherosclerotic cardiovascular disease (ASCVD) (81, 82). Clinical 

markers of IBD including CRP, IL-1, TNF-α, anti-neutrophil cytoplasmic antibodies, 

IgM and IgG antibodies, and vascular endothelial growth factors attribute to leukocyte 

migration, ROS generation, and endothelial injury, all contribute to atherogenic 

cardiomyopathies (83). Cardiovascular component of metabolic syndrome is often 

caused by inflammation and neuro-hormonal misbalance (49). Increased serum CRP 

and IL-6 cytokine levels observed in metabolic syndrome is correlated with ASCVD 
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(84). Besides dyslipidaemia, insulin resistance can induce hypertension by increasing 

serum viscosity, circulatory fibrinogen concentration and angiotensin-II production 

(49). Angiotensin-II has been demonstrated to augment NOX-mediated free radical 

generation leading to NFκB activation, platelet aggregation, endothelial dysfunction 

and oxidation of LDL, thereby mediating initiation and exacerbation of ASCVD (49, 

85). Other chronic inflammatory diseases including cancer (86) and AIDS (87) have 

also been found to promote progressive atherosclerotic event and adverse 

cardiovascular co-morbidity. 

 

4. THE BUILT-IN DEFENCE STRATEGIES AGAINST CHRONIC 

INFLAMMATION 

 

     A loss of control over progressive inflammation is potentially inimical to the 

systemic homeostasis. A concatenation of inflammatory events that if not resolved will 

gradually progress towards a chronic inflammation with irreversible organ damage (88). 

Fortunately, our body has developed self-limiting mechanism to curb its progress with 

endogenous anti-inflammatory molecules and immuno-resolvents (89, 90). From the 

histological perspective, an inflammation resolution phase commences from the point 

of extreme neutrophil invasion in the inflammatory zone and continues until all the 

infiltrates being eliminated from this area (90). This is achieved by the accumulated 

leukocytes undergoing apoptotic elimination or phagocytosis or flushing  away 

through systemic recirculation (90). The synthesis of pro-inflammatory molecules such 

as cytokines, prostaglandins, leukotrienes, CAM are down-regulated and their catabolic 

degradation promotes resolution process (90, 91).  

Several natural molecules are actively produced in aiding termination of 

inflammation at the induction of resolution phase. These include the resolvins, lipoxins, 

protectins and maresins (92). Resolvins are endogenously synthesized lipid pro-

resolutive mediators derived from dietary ω-3 fatty acids― eicosapentaenoic and 

docosahexaenoic acids (93). The pro-resolutive activity of resolvins are attributable to 

their ability to inhibit neutrophils, monocytes, and dendritic cell migration and down-

regulation of IL-1β, TNF-α, P-selectin, and VEGF gene expression (91-94). Resolvins 

also enhance tissue repair and regeneration after the termination of inflammation (91). 

Unlike resolvins, lipoxins are synthesized from the non-dietary endogenous fatty 

acid― arachidonic acid (95). Lipoxins potentially inhibits neutrophil mobilization and 

promote recruitment of non-inflammatory macrophages that are important for 

phagocytosis of apoptotic neutrophil and other cellular debris (a process called 

efferocytosis) (96). Another vital lipid immuno-resolvent is protectin which besides 

promoting efferocytosis and preventing polymorphonuclear neutrophil infiltration, 

checks T cell recruitment and stimulates their apoptosis via TNF-α and IFN-γ signalling 

mechanism (91). 

 

5. MELATONIN AS AN ANTI-INFLAMMATORY AGENT 

 

     Melatonin is a phylogenetically old molecule, first discovered in the bovine 

pineal gland, chemically identified as N-acetyl-5-methoxytryptamine (97-98). From 

bacteria to the most advanced species, Homo sapiens, melatonin’s omnipresence has 

intrigued the scientific world to investigate its biological functions across the species. 

The free radical scavenging activity of melatonin is considered to be its most ancient 

function that has probably made this tryptophan derivative a life sustaining molecule in 

most of the organisms (99). The other functions of melatonin including regulation of 
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circadian rhythm (9, 14, 100), stimulation of antioxidant enzymes (101-102), 

participation in immuno-regulation (103) and maintenance of metabolic homeostasis of 

cells are acquired during evolution. The immuno-modulatory action of melatonin 

encompasses both pro-inflammatory and anti-inflammatory mechanisms (104). The 

pro-inflammatory property is known to play a significant role in coping with pathogenic 

insult, while the anti-inflammatory function is the most crucial for tissue injury 

prevention and recuperation. 

Free radical production and inflammation are reciprocally connected process . The 

antioxidative and ROS scavenging property of melatonin is, therefore, critical to the 

anti-inflammatory activity (13, 17, 105). Melatonin directly protects the proteins, lipids, 

and nucleic acids from oxidative injury and also stimulates the gene expression and 

activities of the antioxidant enzymes to restore cell’s innate ability to suppress oxidative 

stress (14-15, 106). The progression of inflammation is always accompanied by acute 

ROS production that potentiate pathogen induced tissue damage (107). For instance, in 

one hand, the infiltrated neutrophils trigger NADPH oxidase (NOX)-induced 

superoxide generation known as “respiratory burst” to kill pathogens. On the other hand, 

this process damages the host tissues by extensive oxidative stress (108). Melatonin can 

proficiently suppress NOX-mediated uncontrolled oxidative burst by the phagocytes 

and microglial cells; therefore, prevents an impending aggressive and chronic 

inflammatory state (104). ROS facilitates the intercellular communications of 

endothelial cells by decreasing occludin expression (109). Adhesion molecules 

including selectins (E- selectin and P- selectin) and cell adhesion molecules (VCAM 

and ICAM) expression on the vascular endothelial cells are modulated by free radicals 

which enhance leukocyte transmigration to the site of inflammation, a process that is 

attenuated by superoxide dismutase (SOD) activation (110-111), while melatonin 

stimulates SOD activity in tissues (112). Additionally, melatonin limits adhesion 

molecule expression on activated endothelial cells; thus, it prevents sustained immune 

cell recruitment and reduces the inflammation (13). 

ROS, pathogenic substances like lipopolysaccharides (LPS), and certain 

inflammatory mediators activate NFκB, which in turn, stimulates the expression of 

genes of pro-inflammatory cytokines as well as proinflammatory enzymes, viz., 

cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) (113-116). 

Melatonin suppresses the NFκB activation; therefore, downregulates pro-inflammatory 

gene expression and their downstream signalling (104). For example, in LPS 

challenged murine cells, the NFκB-upregulated iNOS and/or COX expression was 

significantly attenuated by melatonin (13). In SAMP8 mice melatonin suppresses 

NFκB activity and reduces hepatic inflammation (117). Suppression of NFκB to inhibit 

inflammatory damages by melatonin in ischaemia/reperfusion injury (118-120), 

exercise stress (121-122), Alzheimer’s disease (123), pulmonary inflammation (124), 

IBD (125), diabetic conditions (126), and cancer (127) has been well documented.  

Melatonin reduces the pro-inflammatory cytokines, TNF-α, IFN-γ and IL-12, but 

increases anti-inflammatory cytokine IL-10 in LPS stimulated mice (17). Similar 

results have been observed in animals exposed to heat stress or ageing, where IL-10 

protein expression was restored by melatonin administration (128-131). In senescent 

animals, melatonin minimizes expressions of pro-inflammatory cytokines― IL-1β, IL-

6 and TNF-α (129-130). Melatonin also normalizes the cytokine profiles in animals 

subjected to strenuous exercise (121, 122) and chemical injury (132-134). It also 

attenuates NLRP3 inflammasome activation and apoptosis (18). 
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6. ROLE OF MELATONIN AS AN EFFICIENT CARDIOPROTECTIVE 

MOLECULE 

 

Melatonin has profound beneficial effects on cardiovascular disorders. Myriad of 

molecular mechanisms have been proposed for its cardioprotective effect. One of them 

is the regulation of Sirtuin 1 (SIRT1), an NAD+ dependent class III histone deacetylase 

and a sensor for metabolic and inflammatory stress (135). Under oxidative stress, 

SIRT1 deacetylates a transcription factor called Forkhead Box-O (FOXO) and triggers 

the transcription of its target genes of anti-oxidant enzymes (catalase and SOD), anti-

apoptotic factors, and proteins that control the cell cycle (136). SIRT-1 activation is 

essential for cell survival and stress resistance; however, it is often down-regulated in 

many cardiac disorders including age-related cardiac abnormalities and 

ischaemia/reperfusion (I/R)-induced cardiac injuries (137). In I/R injury, melatonin 

upregulates SIRT1 expression and consequently reduces malondialdehyde 

concentration, superoxide formation and NOX, caspase-3, and BAX protein expression 

while increasing Bcl-2 production (135). SIRT1 expression is  up-regulated by 

melatonin in rats treated with high fat diet and streptozotocin or subjected to I/R stress 

(138). 

In addition to SIRT1, the Notch/Hes/PI3K/Akt signalling pathway is also involved 

in myocardial remodelling, regeneration and restoration. Notch-1 is critical   for 

cellular communication and is responsible for cell proliferation, differentiation, and 

survival (139). Upon ligand-receptor interaction, Notch intracellular domain (NICD) is 

split apart from the receptor by the action of γ-secretase, and is translocated to the 

nucleus to induce the transcription of hairy and enhancer of split-1 (HES1) mRNA 

(140). Protein kinase-B (also known as Akt) is an efficient suppressor of cell death and 

it is activated upon docking at phosphoinositides, phosphorylated by phosphoinositide 

3-kinase (PI3K). This PI3K/Akt signalling is inhibited by phosphatase and tensin 

homolog (PTEN), and HES1 protein is known to abolish such pathway (141). 

Melatonin stimulates Notch1, NICD, and HES1 production, while inhibits PTEN 

expression. Notch/HES1/Akt signalling up-regulates anti-apoptotic BCL-2 gene and 

decreases the expression of pro-apoptotic genes such as caspase-3 and BAX and this 

pathway is enhanced by melatonin (142). Under a stressful condition such as ischaemia, 

the Notch signalling serves as a cardioprotective response and melatonin enhances this 

signalling pathway potentiating a protective mechanism (142). 

Endoplasmic reticulum (ER) stress response is implicated in functional impairment 

of cardiac tissue. Defective protein folding and disrupted calcium homeostasis can 

culminate in ER stress which is characterized by aggregation of scrambled proteins. 

This activates the “unfolded protein response” (UPR) with resultant protein kinase 

RNA-like ER kinase (PERK)-mediated phosphorylation of eukaryotic initiation factor-

2α (eIF2α). eIF2α, then, facilitates translocation of active transcription factor-4 (ATF4) 

into the nucleus to trigger transcription of mRNAs associated with autophagy and 

apoptosis (143). Melatonin attenuates PERK/eIF2α/ATF4 signalling-stimulated 

myocardial ER stress in I/R injury, possibly by the activation of pro-survival 

mechanisms―reperfusion injury salvage kinase (RISK) pathway and survivor 

activating factor enhancement (SAFE) pathway (144). Hypoxia-induced I/R damage 

can result in disruption of calcium homeostasis in cardiomyocyte sarcoplasmic 

reticulum. Melatonin efficiently extenuates I/R-induced calcium imbalance by 

regulating the calcium-handling proteins— sarco/endoplasmic reticulum calcium 

ATPase (SERCA) and sodium calcium exchanger (NCX), and enzymes such as 

endothelial nitric oxide synthase and calcium/calmodulin-dependent protein kinase II 



 

Melatonin Research (Melatonin Res.)         http://www.melatonin-research.net 
 

Melatonin Res. 2021, Vol 4 (1) 1-29; doi: 10.32794/mr11250080              10                        
 

(CaMKII) (145). The cardioprotective effects of melatonin is also confirmed by another 

way, i.e., melatonin deficiency. Ganglionectomy which causes melatonin deficiency 

and diminishes the expressions of melatonin receptors and SERCA pump in 

cardiomyocytes, has been found to augment ventricular tachycardia in rat heart 

subjected to I/R injury (146). 

Melatonin exerts its anti-hypertensive effect by receptor-mediated activation of the 

anterior hypothalamic area, vascular smooth muscle relaxation, antioxidant action , and 

lowering the blood catecholamine (147). Melatonin regulates vascular integrity by 

restoring a normal mitochondrial function, modulating mitochondrial dynamics 

through mitofusin-2 and inhibition of mitochondrial permeability transition pore 

(mPTP) opening (148).  

Obesity and insulin resistance are common risk factors for cardiovascular 

conditions. A negative correlation has been observed between serum melatonin and 

obesity (149). In fact, melatonin can mimic the actions of insulin and leptin in 

regulation of energy homeostasis via a common signalling mechanism involving PI3K 

and STAT-3 (149). In diabetic rats, melatonin supplementation dose-dependently 

raised circulatory adiponectin levels, decreased glucose intolerance and enhanced 

insulin sensitivity (150). Besides, melatonin can prevent platelet aggregation, curbs 

plasma level of cholesterol, decreases endothelial permeability and attenuates 

inflammatory reactions, thereby impeding atherosclerotic cardiovascular disorder (151).   

 

7. MELATONIN SHIELDS THE CARDIOVASCULAR SYSTEM AGAINST 

INFLAMMATORY DISEASE-MEDIATED ADVERSE REACTIONS 

 

     The potent anti-inflammatory and cardioprotective properties of melatonin 

contribute to its efficiency in alleviating cardiovascular disease associated with 

inflammation.  

 

7.1. Melatonin in atherosclerotic cardiovascular disease. 

 

     Aggregation of oxidized phospholipids and low-density lipoproteins in the 

arterial intima instigates NFκB-induced expression of CAMs in endothelial cells. This 

is a primary step in atherogenesis. This process promotes leukocyte recruitment and 

their trans-endothelial migration as mentioned previously. All these events can be 

minimized by melatonin. In addition, melatonin down-regulates the TLR4/myeloid 

differentiation primary response protein (MyD88)/NFκB signalling event, further 

strengthening its anti-inflammatory function (152). The oxidized LDL acts as a ligand 

for endothelial TLR4, melatonin reduces this ligand of TLR4. The atherosclerosis 

related serum high density lipoprotein, triglycerides, TNF-α, IL-6, high-sensitivity C-

reactive protein were all reduced by melatonin along with the reduction in foam cell 

count (152). Melatonin stimulates SIRT3/FOXO3/Parkin system-induced suppression 

of NLRP3 inflammasome, thus minimizing atherosclerotic progression (153). MMP is 

an important factor that is responsible for the rupture of atheromatous plaque and 

exacerbation of atherosclerotic condition. The MMP9 activity is inhibited by melatonin 

that docks at the active site of the enzyme (154). 

 

7.2. Melatonin and myocardial infarction. 

 

     Ischaemia/reperfusion injury and myocardial infarction are manifested by 

aggressive inflammatory reactions that can cause severe consequences, even mortality 
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(155). In a murine model, administration of melatonin prior to ischaemic insult 

attenuates TLR4 pathways by the activation of SAFE mechanism (156). Besides, 

melatonin-mediated regulation of several intracellular signalling cascades such as 

MAPK and JAK-STAT pathways, as well as SIRT1/FOXO1, 

Notch/Hes/PI3K/Akt/SIRT3, AMP-dependent protein kinase (AMPK)/peroxisome 

proliferator-activated receptor γ co-activator 1α (PGC1α)/SIRT3 and AMPK/Protein 

kinase G-1α (PKG1α)/NF-E2-related factor2 (Nrf2) axes have been implicated in 

defending against inflammatory responses during myocardial infarction (155, 157). 

Due to the lipophilic property, melatonin easily reaches cytosol and activates SIRT1, 

SIRT3 and Nrf2 to exert its anti-inflammatory activity (155). When melatonin is used 

as adjunctive therapy with primary percutaneous coronary intervention (pPCI) in acute 

myocardial infarction patients with ST-segment elevation, it significantly improves the 

efficacy of pPCI and leads to the reduction of infarct size (158,159). Although both 

melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2) are found in the 

mammalian heart, cardioprotective action of melatonin in I/R injury is primarily 

mediated by the MT2 (160). Further, melatonin administration into hypothalamic 

paraventricular nucleus (PVN) has resulted in reduced level of free radicals, 

improvement of antioxidant activity, increase in IL-10 and decrease in NF-κB and IL-

1βlevels in PVN, all these are beneficial in ameliorating inflammatory cardiac damage 

induced by myocardial I/R injury (161). 

 

7.3. Melatonin in diabetic cardiomyopathy. 

 

     Type-II diabetes mellitus is considered to be an independent hazard to coronary 

heart disease and myocardial infarction (162). c-Jun NH2-terminal kinase (JNK) is one 

of the components of MAPK pathway to involve in post-ischaemic injury in diabetic 

mice model. Melatonin abrogates JNK/p53 signal-induced cardiac fibrosis and 

apoptosis of cardiomyocytes caused by high lipid/high glucose and hypoxic assaults 

(163). Melatonin was able to inhibit mitochondrial and ER stress-induced cardiac cell 

death in diabetes by preventing the activation of tyrosine-protein kinase or Syk, thereby, 

improving mitochondrial complex I activity, and repressing ROS generation, pro-

inflammatory cytokine (TNF-α, TGF-β, and IL-6) release, SERCA peroxidation, and 

release of pro-apoptotic caspase-9 and caspase-12 (164). Melatonin treatment has 

further shown an enhancement of SOD, glutathione peroxidase, catalase activities and 

decrease in expression of mammalian target of rapamycin (mTOR) protein in diabetic 

heart. mTOR is known to be involved in the pathogenesis of type-II diabetes-induced 

cardiac disorders (165). Additionally, in hyperglycaemic conditions, melatonin 

attenuates cardiac NLRP3 inflammasome activation and the concomitant rise in 

inflammatory cytokines― IL-18 and IL-1β driven by procaspase-1 cleavage, thus 

preventing inflammation-mediated diabetic cardiomyopathy (166). Activated NLRP3 

participates in TGF-β/Smad signalling pathway in cardiac fibroblasts and consequently 

increases the synthesis of extracellular matrix proteins that paves the way for cardiac 

fibrosis. Melatonin effectively prevents such fibrotic changes in cardiac tissue by 

inhibiting the TGF-β/Smad pathway activation (166). 

 

7.4. Melatonin in chronic autoimmune disease-induced cardiovascular diseases.  

 

     Several autoimmune diseases entail common inflammatory mechanisms which 

often cause cardiovascular disorders. Chronic inflammatory autoimmune conditions 

can predispose patients towards lethal cardio-pathogenic alterations even in absence of 
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conventional cardiovascular risk factors (74, 78, 80, 82). Although the reports regarding 

effects of melatonin on autoimmune inflammation are not consistent, its potential 

beneficial effects in this condition have drawn a great attention recently. For example, 

recent evidence has demonstrated that melatonin down-regulates MMP9 activity, as 

well as IL-1β and TNF-α expressions in the synovial fibroblasts of patients with 

rheumatoid arthritis (RA) (167). Melatonin also stimulates microRNA (miR-3150a-3p) 

to produce anti-apoptotic action in RA patients (167,168). Both systemic lupus 

erythematosus (SLE) and systemic sclerosis (SS) kindle pro-inflammatory responses 

leading to atherogenesis and myocardial infarction (79,80), which can be targeted by 

melatonin (152,153, 155). The potency of melatonin in the regulation of lipid 

homeostasis and suppression of inflammatory pathways allows it to be a suitable 

candidate adjuvant to conventional therapies for cardiovascular co-morbidities in 

patients with systemic autoimmune conditions. Mechanistically, melatonin can switch 

T-helper 1(TH1) cell subset towards T-helper 2(TH2) and minimizes pro-inflammatory 

cytokine release, thereby ameliorating the severity of autoimmune diabetes (170). The 

anti-inflammatory, antioxidant, and anti-apoptotic effects of melatonin are also 

observed in patients with inflammatory bowel disease (IBD). Rise in circulatory TNF-

α and CRP levels in IBD promotes atherogenesis (83). Melatonin significantly reduces 

TNF-α production in animal model of colitis and reinstate the CRP levels to its 

physiological range in patients with IBD (171,172), further suggesting melatonin’s 

beneficial role in ulcerative colitis, thus, melatonin has the potential to retard IBD-

associated cardiomyopathy. 

 

7.5. Effects of melatonin on immunodeficiency-mediated impaired cardiac 

homeostasis.  

 

     Many studies have demonstrated an association between chronic HIV infection 

and thickening of the carotid artery wall (173), myocardial inflammation (174), and 

coronary atherosclerosis (87). The morbidity and mortality related to cardiovascular 

diseases are higher in HIV infected patients compared to the controls. The patients are 

often manifested by sustained T-cell activation, persistently escalated circulatory 

cytokines, gradual deterioration in immune system function, chronic inflammation, 

viral co-infection secondary to HIV, and adverse effects of long-term combinational 

anti-retroviral therapy (41). Incidence of acute myocardial infarction and stroke in 

patients suffering from AIDS have raised serious concern. In this regard, the anti-

inflammatory and immuno-stimulatory functions of melatonin could be beneficial. 

Further, Highly Active Antiretroviral Therapy (HAART) used for HIV treatment has 

been reported to induce metabolic syndrome, which is a potent risk factor for 

cardiovascular diseases (175). In a recent study, it has been reported that melatonin 

administration for a month, in HIV patients receiving HAART, reduced blood glucose 

level by 23%. Additionally, hypercholesterolaemia and high plasma triglycerides in 

patients subjected to HAART were efficiently alleviated by melatonin treatment (176). 

 

7.6. Melatonin protects the cardiac function in cancer patients.  

 

     Several in vivo and in vitro investigations have revealed the potent oncostatic 

effect of melatonin (177). The fundamental mechanisms governing such anti-cancer 

activities of melatonin involve its antioxidant and anti-inflammatory properties. In 

addition, the regulation of genomic instability, modulation of tumour metabolism, 

induction of cancer cell apoptosis, inhibition of angiogenesis as well as epithelial-to-
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mesenchymal transition further strengthen the anticancer effects of melatonin (178). 

Melatonin efficiently shields the DNA against damage and mutagenesis by stimulating 

the activities of cellular antioxidant molecules, inhibiting the pro-oxidant enzymes and 

maintaining proper functioning of mitochondrial electron transport chain (177). 

Melatonin improves rectification of faulty DNA replication in colon cancer (HCT-15) 

and breast cancer (MCF-7) cell lines (179). DNA distortion caused by UV (180), 

ionizing radiation (181), nucleotoxic agents such as hydrogen peroxide (182), 

formaldehyde (183), bisphenol A (184) and phenytoin sodium (185) has also been 

prevented by melatonin treatment. It is suggested that high nocturnal melatonin 

concentration is responsible for maintaining non-malignant phenotype in cancer cells 

by melatonin’s ability to regulate pyruvate dehydrogenase complex/pyruvate 

dehydrogenase kinase axis (186). Further, melatonin halts cancer development and 

aggression by attenuating NFκB activation (187), destabilizing hypoxia inducible 

factors (188), repressing cyclins and cyclin dependent kinases (189), stimulating the 

expressions of tumour suppressor genes (viz., BRCA and p53) (190), promoting 

apoptosis (191) and impeding PI3K/Akt/mTOR cascade (192). 

Besides the direct damaging consequences of the disease itself, the side-effects 

caused by chemotherapy, which is by far the mainstream treatment for cancer is a big 

concern. Many of these conventional chemotherapeutic agents evoke toxic reactions 

that actuate a secondary malignancy as well as adversely affect the vital organs and 

systems including the cardiovascular system (5). One such popular anticancer drug is 

doxorubicin, which has been reported to impart potent cardiotoxic effects by increasing 

the oxidative burden in heart tissue (193). Doxorubicin-induced cardiomyocyte injury, 

marked by altered electrophysiological property and increased circulating cardiac 

damage markers, is efficiently prevented by melatonin (194). The defensive mechanism 

of melatonin against doxorubicin-mediated myocardial damage includes a reduction in 

lipid oxidation, enhancement of antioxidant activities, preservation of mitochondrial 

integrity, prevention of DNA fragmentation and apoptosis in cardiomyocytes, 

modulation of serum lipid profiles and increase in cardioprotective zinc levels in plasma 

(5). Similar results have been obtained in cardiotoxicity caused by epirubicin, where 

melatonin co-administration was found to mitigate epirubicin-induced nitrosative stress 

in the heart (195). Trastuzumab, used as a part of adjuvant therapy in various neoplastic 

conditions, has noxious impact on the cardiac tissue health (196). Melatonin 

administration in rats significantly lowers trastuzumab-mediated oxidative stress and 

cardiac injury biomarkers to their basal levels (197). Taking these together, it can be 

concluded that melatonin plays a vital role in restoring cardiac homeostasis by 

ameliorating oxidative stress and inflammatory damage that occur as a ramification of 

cancer pathogenesis and the toxicity caused by various radio- and chemotherapeutic 

interventions. 

 

8. SUMMARY AND CONCLUSION 

 

     Inflammation is considered to be both a saviour and a noxious process depending 

on the severity and perpetuity of the inflammatory reactions. Melatonin, a regulator of 

inflammatory reaction, acts via multiple signalling mechanisms to countervail this 

double-edged sword of inflammation. Since oxidative stress is an integral part of 

inflammatory process, the antioxidant function of melatonin plays a key role in 

impeding the overaction of the inflammatory response in many conditions. Melatonin 

suppresses the excessive production of chemokines and pro-inflammatory cytokines 

including TNF-α, IFN-γ, IL-1β, IL-6, IL-12 and IL-18 and stimulates the production of 
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anti-inflammatory IL-10. In addition, melatonin decreases the expression and activities 

of the proinflammatory enzymes― iNOS and COX-2 and inhibits the excessive 

migration of immune cells to the inflammatory site by suppressing the expression of 

selectins and CAM in vascular endothelial cells. Specific to the myocardial tissue, 

melatonin modulates various molecular pathways, including the Sirtuin and Notch-

mediated signalling, thus, attenuating the adverse inflammatory reaction triggered by 

ischemic episode. Modulation of inflammasome activation, AMPK/PGC-1α or 

AMPK/PKG-1α, MAPK, JAK-STAT, SAFE and RISK pathways, maintenance of 

calcium balance, and restoration of a healthy lipid profile confers the protective effects 

of melatonin against atherosclerosis, myocardial infarction and diabetic 

cardiomyopathy. Melatonin protects the cardiac tissue during chronic systemic and 

organ-specific autoimmune conditions like systemic lupus erythematosus, systemic 

sclerosis, rheumatoid arthritis, type-1 diabetes and inflammatory bowel disease. These 

mechanisms are illustrated in Figure 1. 

Fig. 1. Protective mechanisms of melatonin against inflammatory disease-

mediated cardiovascular complications. 

     During atherosclerosis, oxididized LDL acts as a ligand for endothelial TLRs to 

activate NFκB that stimulates VCAM expression in endothelial cells. Circulating 

monocytes adheres to the endothelial cells and increased endothelial leakage 

(permeability) allows their diapedesis. Within the arterial intima, monocytes are 

converted into tissue macrophages and by accumulating fat particles they form foam 

cells. Inflammatory reactions activated by foam cells and the mechanism by which 

melatonin prevents such responses are described in the figure. Amelioration of altered 

plasma composition during inflammatory conditions such as autoimmune disease, 

metabolic syndrome, HIV infection treated with HAART and cancer with 

chemotherapeutic intervention have been demonstrated. Myocardial infarction: 

Melatonin modulates the signaling pathways in myocardial infarction- prevents 

oxidative stress and apoptosis; promotes stress resistance and cell survival. Cancer 

(Chemotherapy): Prevention of cardiotoxic effects of doxorubicin, epirubicin and 

trastuzumab by melatonin has been shown. Diabetic cardiomyopathy: Attenuation of 

high fat, high glucose and hypoxia-induced proinflammatory pathways by melatonin in 

diabetic heart tissue has been demonstrated in the figure.  Adpn- Adiponectin; AMPK- 

AMP-dependent protein kinase; ATF4- Activating transcription factor-4; CRP- C-
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reactive protein; FOXO1- Forkhead Box O-1; HDL- High density lipoprotein; HES1- 

Hairy and enhancer of split-1; IL- Interleukin; JNK- c-Jun NH2-terminal kinase; LDL- 

Low density lipoprotein; MMP9- Matrix metalloproteinase-9; MTR- Melatonin 

receptor; NFκB- Nuclear factor kappa-light-chain-enhancer of activated B cells; 

NICD1- Notch intracellular domain-1; NLRP3- NLR family, pyrin domain containing-

3; Nrf2- NF-E2-related factor2; p-eIF2α- eukaryotic initiation factor-2α 

(phosphorylated); PERK- Protein kinase RNA-like endoplasmic reticulum kinase; 

PGC1α- Peroxisome proliferator-activated receptor γ co-activator 1α; PI3K- 

Phosphoinositide 3-kinase; PKG1α- Protein kinase G-1α; ROS- Reactive oxygen 

species; SIRT- Sirtuin; TG- Triglycerides; TGFβ- Transforming growth factor-β; TLR- 

Toll-like receptor; TNF-α- Tumor necrosis factor-α; UPR- Unfolded protein response; 

VCAM- Vascular cell adhesion molecule. 

 

Undoubtedly, melatonin is a strong suppressor of excessive inflammatory reaction 

bestowed with versatile cardioprotective benefits. Thus, melatonin can emanate as a 

potent therapeutic solution for inflammatory conditions with cardiovascular 

pathogenicity. 
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