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ABSTRACT 

 

     Ovarian cancer (OC) has a high mortality rate. Although most patients respond to the 

conventional chemotherapy [e.g., paclitaxel (PTX)], some also develop drug resistance to make 

the treatment less effective. Since melatonin exhibits antioxidant, antitumor, and 

immunomodulatory functions in a variety of solid tumors, in this study the effects of a 

combination of PTX and melatonin on SKOV-3 human ovarian carcinoma cells were 

investigated and the focus was given to the Toll-like receptor (TLR)-mediated inflammatory 

pathway and cell signaling-related molecules. Flow cytometry showed that this combination 

significantly boosted the apoptosis/necrosis responses of the cancer cells. Cell migration was 

attenuated by melatonin alone, and the combination led to a reduced number of migrating and 

invasive cells. Melatonin alone and its combination also reduced the levels of TLR4, MyD88, 

TRIF, and PD-L1, but not TLR2. In addition, the combination significantly lowered the levels 

of NF-kB p65, PI3K, p-AKT, p38, ERK 1/2, JNK, CREB, p70s6K, and STAT5. The results 

suggested that this combination was effective in reducing the viability and the invasive capacity 

of SKOV-3 cells while increasing their apoptosis and necrosis rates. The potential mechanism 

of this combination is to attenuate the downstream molecules of the TLR4-mediated 

inflammatory pathway and cell signaling-related proteins in the cancer cells. Thus, melatonin 

improved the chemosensitivity of the cancer cells to PTX, serving as an effective adjuvant 

therapy against OC. 

 

Key words: Ovarian cancer, melatonin, paclitaxel, Toll-like receptor, PD-L1, cell signaling, 

SKOV-3 cells. 
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1. INTRODUCTION 

  

     Ovarian cancer (OC) is the most common malignancy among women with relatively high 

mortality rate (1). Due to the lack of specific symptoms and initial screening methods, many 

women are usually diagnosed at an advanced stage, and most of them become incurable (2, 3). 

The current standard treatment for OC includes chemotherapy, radiation therapy, surgical 

removal, and immunotherapy, depending on the tumor stages (4, 5). In early stage, surgery and 

chemotherapy with platinum derivatives are the choice whereas in the advanced stage platinum 

derivatives plus taxols is the common therapy (6). 

     Paclitaxel (PTX) is designed for the treatment of several cancers, including OC (7, 8). 

Although many patients are responsive to the standard therapies, tumor relapse and recurrence 

are rather frequence (9), and mainly associated with chemoresistance (10). Chemoresistance 

may involve multiple mechanisms and one of them is associated with changes in specific 

receptors or even cell surface transporters, resulting in reduced drug influx, which decreases 

drug sensitivity (11). Also, it is known that PTX is a ligand of the Toll-like receptor 4 (TLR4)  

(12, 13); therefore, chemoresistance to PTX may occur through the mechanisms linked to 

TLR4 in OC (14). 

     TLRs function by promoting local inflammation in response to pathogens and/or related 

molecules, being predominantly expressed by immune cells and tumor cells (15, 16). Curtin et 

al. (17) reported that the activation of the TLR pathway promoted tumor growth. Upon 

activation, TLRs trigger inflammation via the molecular adapters called MyD88 or TRIF (18), 

which leads to the activation of nuclear factor-kB (NF-kB). NF-kB regulates the transcription 

of several genes related to immune response, cell adhesion, proliferation, angiogenesis, and 

apoptosis (19). 

     Immune checkpoint molecules are expressed in different types of immune and tumor cells. 

Among them, PD-L1 acts to inhibit T cell-mediated immune response (20). Therapies using 

monoclonal antibodies against PD-1/PD-L1 have been recently documented (21), including for 

treatment of the developmental stages of OC (22, 23). Since the mortality rate associated with 

OC is alarmingly high (24), it is essential to understand how these checkpoint molecules work 

in the context of the novel therapeutics.  

     Many signaling pathways are associated with tumor progression. These include the PI3K-

AKT signaling pathway (25) and its activation is often found in the advanced stages of breast 

and ovarian cancers (26). The MAPK pathway includes protein kinases such as ERK1/2, p38, 

and c-Jun (JNK1/2/3) responsible for controlling cell proliferation, cell survival, and cell death 

(27, 28). JNKs are active through cellular stress, respond to extracellular stimuli, and are 

routinely involved with PTX chemoresistance in OC (29–31). More recently, Jiang et al. (32) 

reaffirmed that MAPK/ERK pathway was expressed in OC cells (e.g., SKOV-3 cells), and this 

pathway played a vital role in the development and progression of OC. The STAT family of 

transcription factors were involved in apoptotic processes, angiogenesis, cell proliferation, and 

suppression of antitumor immunity (33, 34). The STAT5 pathway has a significant correlation 

with OC recurrence and lower survival rates of the patients (35), and is also related to advanced 

tumor stage and resistance to chemotherapy (36, 37).  

     In the attempt to resist tumor growth and progression, melatonin was suggested as a 

powerful agent to be used in the early and late stages of the tumor processes (38). Melatonin is 

an indoleamine secreted by the pineal gland during darkness, but also produced in many cells 

in a non-circadian manner. This molecule presents a remarkably functional versatility with 

antioxidant, oncostatic, and immunomodulatory properties (39, 40). In a previous study we 

showed that melatonin reduced tumor mass and volume in a rat model of OC induced by 

chemicals (41, 42). We also observed that melatonin administered to OC animals suppressed 

the TLR4 expression and its downstream molecules, and furtherly altered the MAPK pathway 
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(10, 43). While these findings support an anti-cancer role of melatonin, additional details of 

these processes in the presence of PTX may indicate the novel mechanisms of molecular 

interaction. Since melatonin is a multitasking agent with many functions, we investigated 

whether the combination of PTX with melatonin regulates the TLR-mediated inflammatory 

pathway and cell survival-related signaling pathway in SKOV-3 cells. 

 

2. MATERIALS E METHODS  

 

2.1. Cell culture and reagents.  

 

     The SKOV-3 cell line (ATCC® HTB-77) was obtained from the American Type Culture 

Collection (ATCC, Manassas, VA, USA). Cells were grown in RPMI medium (Gibco, Paisley, 

UK), supplemented with 10% fetal bovine serum (FBS) (Gibco) and penicillin at 100 IU/ml 

and 100 µg/ml streptomycin (Gibco) and incubated in a humidified atmosphere at 37°C with 

5% CO2. All cells were expanded in 75 cm2 cell culture flasks (Costar, Cambridge, MA, USA), 

containing the basal culture medium which was changed periodically. After reaching 90% 

confluence, cell culture supernatant was aspirated, and cells were washed twice with 10% 

phosphate-buffered saline (PBS; Oxoid Limited, Hampshire, UK). The cells were then 

incubated with trypsin/EDTA (Gibco) to avoid any adherence to the flasks. After 

centrifugation, cells were washed in a culture medium, resuspended, used in the experiments. 

 

2.2. Experimental design. 

 

     To assess the effects of the combination of PTX and melatonin, we initially identified the 

suitable concentration of melatonin and PTX which promoted greater apoptosis and cell 

necrosis evaluated by the flow cytometry assay (Annexin V, FITC/PI). The experiment was 

carried out with the evaluation of either melatonin alone or combination with PTX. The cells 

were exposed to pharmacological concentrations of melatonin (1.6, 3.2, and 4.0mM) and PTX 

(0.625µM), respectively for 48h in the culture medium. Next, eight experimental groups were 

formed, namely: Group 1) Control: standard medium containing 200µl DMSO solution as 

vehicle; Group 2) Melatonin at the concentration of 1.6mM; Group 3) Melatonin at the 

concentration of 3.2mM; Group 4) Melatonin at the concentration of 4.0mM; Group 5) PTX at 

the concentration of 0.625µM; Group 6) PTX + Melatonin (1.6mM); Group 7) PTX  + 

Melatonin (3.2mM), and Group 8) PTX + Melatonin (4.0mM). Melatonin was dissolved in 

DMSO. Since the concentration of 3.2 mM of melatonin potentiated the effects of PTX on 

apoptosis (~ 50%), we used this concentration to carry out the subsequent experiments. All 

experimental assays were performed in biological and technical triplicate. The procedure was 

illustrated in Figure 1.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic representation of the experimental protocol.  

     Mel: melatonin; PTX: paclitaxel. 
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2.3. Analysis of apoptosis by flow cytometry. 

 

     After treatment, SKOV-3 cells were processed for flow cytometry analysis using apoptotic 

detection kit (Becton Dickinson, Franklin Lakes, NJ). Annexin V was conjugated with the vital 

dye propidium iodide (PI) which allowed the identification of apoptotic cells. We set (Annexin 

V and FITC+/PI-) as apoptosis, and (Annexin V+/PI+) and (PI+) as necrosis. The assay was 

performed using a FACSCanto II cytometer (Becton Dickinson, San Jose, CA, USA), and the 

analysis was made using the FlowJo software version 7.2.4 (Three Star). 

 

2.4. Measurement of intracellular melatonin concentration. 

  

     After cells were washed to eliminate the outside melatonin, they were lysed and intracellular 

levels of melatonin was determined by human-specific commercial ELISA assays (EH3344, 

Fine Test), according to the manufacturer’s instructions. The absorbance was read at 450 nm 

on a microplate reader (Epoch, BioTek Instruments, USA). Results were interpolated from 

standard curves generated by plotting the concentration of the standards against their 

absorbance. The concentrations are presented in pg/mL. 

 

2.5. Colorimetric assay for cell viability. 

 

     The cell viability was analyzed using the MTT colorimetric method. After reaching 90% 

confluence, SKOV-3 cells were trypsinized, seeded in 96-well plates at a density of 1x104 cells 

per well, and cultured in RPMI medium supplemented with 10% FBS. After cell adherence, 

melatonin and PTX were added into culture medium. Viability curves were estimated after 48h 

of treatment using the MTT solution (5mg/mL). A microplate reader (Epoch, BioTek 

Instruments, USA) was used to detect the presence of formazan crystals. The percentage (%) 

of cell viability was evaluated based on the control group of each experiment.  

 

2.6. Western blot analysis. 

 

     At the termination of the experiments, cells (5 x 105) were washed with PBS and 

homogenized with RIPA lysis buffer containing protease inhibitors (Sigma CO, Saint Louis, 

MO, USA). Protein quantification was performed using a NanoVue® (GE Healthcare) 

spectrophotometer. Samples with 40 µg of protein cell extract were solubilized and applied on 

4-20% polyacrylamide gel (SDS-PAGE). After performing electrophoresis, the proteins were 

electrotransferred (35 mA) to 0.2 µm nitrocellulose membrane (BioRad, California, USA). The 

membranes were blocked with 3% milk diluted in TBS-Tween and incubated with the primary 

antibodies: TLR2 (ab191458, abcam, 1:500), TLR4 (ab22048, abcam, 1:500), MyD88 

(ab28763, abcam, 1:500), TRIF (ab13810, abcam, 1:500), PD-L1 (ab238697, abcam, 1:500), 

p-PI3K (ab182651, abcam, 1:500), p-AKT (ab81283, abcam, 1:500) diluted in 1% TBS-

Tween. Next, the membrane was washed in basal solution (1% TBS-Tween) and incubated 

with secondary antibody (1:10,000) diluted in 1% milk. After washing, the reaction was 

generated using the chemiluminescent substrate ECL® Selected Western Blotting Detection 

Reagent (GE Healthcare, Uppsala, Sweden). The analysis evaluated the presence or absence of 

bands in a G-Box transilluminator. The intensity of bands was quantified using Image J, based 

on the optical densitometry and corrected by the endogenous β-actin. Three replicates from 

each group were used. 
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2.7. Measurement of cell signaling molecules. 

  

     The levels of different molecules associated with cell signaling were determined after the 

treatments. The protein extraction (n= 24 samples / group) was performed by using a 

MilliPlex® immunoassay Map Kit (EMD Millipore, Darmstad, Germany) with a standard 

detection kit following the manufacturer´s protocol. The profile of cell signaling (Cat # 48-681 

MAG) included the following molecules: CREB, JNK, NF-kB, p38, ERK1/2, STAT5, and 

p70S6K. The levels of these molecules ranged from 2.4 to 15000 pg/mL. Fluorescence 

intensity was read at 575 nm and measured using the MAGPIX system (Luminex® 

Corporation, Austin, TX, USA). 

 

2.8. Cell invasion and migration assays. 

 

     Evaluation of SKOV-3 cell invasiveness was performed using 24-well plates. A thin 

membrane of Geltrex® was added to each well, occluding the lower polyethylene terephthalate 

(PET) membrane. SKOV-3 cells (1x105) were added to the top of the insert and received 

standard medium without FBS. The invasive potential was analyzed based on the ability of 

cells to cross the Geltrex® barrier and the PET membrane through the pores, being attracted 

chemotactically by inferior coverage of culture medium containing 5% FBS. The plates were 

placed in a CO2 atmosphere at 37ºC for 24 h. After the incubation period, cells were fixed in 

methanol for 10 min, and the remaining cells were removed by scraping. Migrated cells were 

stained with a 0.1% toluidine blue solution and photographed with a 5X objective in an inverted 

microscope (ZeissAxiovert®). For the migration assay, a similar experimental procedure was 

used, with the exception of Geltrex® which was not added to the transwell chamber. All 

experiments were performed in triplicate based on four fields and submitted to cell count.   

 

2.9. Statistical analysis. 

 

     The data were analyzed by analysis of variance (One-way ANOVA) complemented with 

Tukey’s multiple comparisons test. For non-parametric data, the Kruskal-Wallis test was used, 

complemented by Dunn’s test. The results were expressed as the mean ± SEM and presented 

in tables and graphs, considering 5% of significance (P value < 0.05). 

 

3. RESULTS 

 

3.1. Effects of combination of melatonin and PTX on SKOV-3 cell apoptosis 

 

     Flow cytometry of cells labeled with annexin V-fluorescein isothiocyanate 

(FITC)/propidium iodide (PI) assay was performed to analyze the percentage of cells 

undergoing either apoptosis or necrosis induced by melatonin combined with PTX (Figure 2). 

The results have identified the early (Annexin V-FITC+/PI-) and late apoptosis (Annexin 

V+/PI+) which were designed as apoptosis as well as necrosis (Annexin V-/PI+). Based on 

previous studies, the increased concentrations of melatonin were used to promote tumor cell 

death. As shown in Figure 2 A-D, apoptosis and necrosis rates were enhanced by the melatonin 

treatment following 1.6, 3.2, and 4.0 mM and PTX 0.625 µM alone for 48 h. Notably, the most 

effective combination was melatonin at 3.2mM with PTX which significantly increased the 

apoptosis and necrosis rate to near the IC50 values; the percentages of apoptosis and necrosis 

rates increased to 45% and 42%, respectively, in comparison to the control group. Of special 

interest, this combination significantly enhanced the apoptosis (~ 35%) and necrosis (~24%) 
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rates compared to PTX alone (Figure 2 A-D). Thus, the rest of experiments were carried out 

with this combination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Effects of the combination of melatonin with PTX on apoptosis in SKOV-3 cells. 

     SKOV-3 cells were treated with melatonin and PTX + melatonin for 48h. A) Percentage of 

apoptotic cells. B) Percentage of necrotic cells. C and D) Representative scatter plots of 

Annexin V (y-axis) vs. PI (x-axis) after administration of PTX and Melatonin. Q1: apoptosis, 

Q2: necrosis, Q3: necrosis and Q4: viable cells. Annexin can be detected in both early and late 

stages of apoptosis, whereas PI stains cells can only be detected in late apoptosis or necrosis. 

Data were expressed as mean ± SEM of triplets. *p<0.05; ** p<0.01; *** p<0.001. One-Way 

ANOVA complemented by Tukey’s test. 

 

3.2. Effects of melatonin and PTX on the mitochondrial viability in OC cells. 

  

     First, the cellular melatonin levels were measured by the enzyme linked immunosorbent 

assay (ELISA). The results showed that SKOV-3 cells presented significantly lower melatonin 

level than that in healthy ovarian cells. Both PTX and melatonin treatments elevated the 

intracellular concentration of melatonin in the tumor cells. More importantly, the combination 

treatment of melatonin and PTX restored the concentration of melatonin in SKOV-3 cells close 

to that in healthy ovarian cells (Figure 3 A).  

     To better understand whether the combination of melatonin and PTX reduced mitochondrial 

activity in tumor cells, we performed the MTT reduction assay. Cell viability was markedly 

reduced after treatment with the combination for 48 h (reduced by ~ 96% vs. control; Figure 3 

B); this reduction was even more pronounced when compared with PTX alone (~ 50% vs. 

control) or melatonin alone (reduced by ~ 87% vs. control). The combination of PTX with 

melatonin efficiently reduced cell viability compared to PTX alone (~ 45%). 
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Fig. 3. Melatonin levels and cell viability.  

     A) Intracellular melatonin after treatment with PTX and melatonin. B) MTT reduction after 

treatment with PTX and PTX/melatonin. Ovarian cancer: SKOV-3 cells, PTX: paclitaxel, Mel: 

melatonin. Data were expressed as mean ± SEM of triplet. *p<0.05; ** p<0.01; *** p<0.001.  

 

3.3. Effects of melatonin and PTX on TLR4-mediated inflammatory pathway and PD-

L1 in ovarian cancer cells. 

 

The levels of TLR2, TLR4, MyD88, TRIF and PD-L1 were measured in the ovarian cancer 

cells. After melatonin treatment, the levels of TLR4, MyD88, and TRIF were significantly 

reduced (Figure 4). Although the TLR2 levels were increased with PTX, the combination did 

not reverse this rise. The combination of PTX and melatonin led to a significant decrease in 

TLR4 levels compared to PTX alone. The levels of MyD88 and TRIF were significantly 

reduced by both treatments; however, no additive effect was observed with the combination. 

To assess the role of melatonin and PTX treatment on the immune checkpoint mechanism, we 

estimated the levels of PD-L1. Notably, the combined treatments were effective in significantly 

reducing the PD-L1 levels (Figure 4 A, B).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Effects of PTX and PTX + Melatonin on TLR-mediated inflammatory pathway. 

     A) Representative profile of the TLR2, TLR4, MyD88, TRIF, and PD-L1. B) Optical 

densitometric analysis of TLR2, TLR4, MyD88, TRIF and PD-L1 levels in ovarian cancer 

cells after normalization with β-actin. Mel: melatonin. Data expressed as mean ± SEM of 

triplet. *P<0.05, **P<0.01, and ***P<0.001. 

 

3.4. The regulatory effects of PTX or melatonin on the expressions of PI3K and AKT 

levels. 

 

To examine cell survival-related proteins in response to PTX and melatonin, we evaluated 

the levels of p-PI3K and p-AKT in the cells. Treatment with melatonin or PTX caused a 

significant reduction in p-AKT levels in comparison to the control group. The combination 

therapy induced a reduced expression levels of p-PI3K and p-AKT compared to control and 

melatonin groups (Figure 5 A and B).  

A) B) 
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Fig. 5. The effects of PTX or melatonin on the expressions of PI3K and AKT levels.  

     A) Representative profile of the proteins p-PI3K and p-AKT in cellular extracts of 40 µg of 

proteins using technical and biological triplicates. B) Optical densitometric analysis of p-PI3K 

and p-AKT levels in ovarian cancer cells after normalization with β-actin. Mel: melatonin. 

Data expressed as mean ± SEM of triplets. *P<0.05, **P<0.01, and ***P<0.001. 

 

3.5. Effects of melatonin with PTX on the signaling pathways for cell growth and 

proliferation. 

  

MilliPlex® Map Kit (Cat # 48-681 MAG) assay was used to assess the total amount of 

protein per cell volume. The results showed that seven kinases, namely NF-kB p65, STAT5, 

ERK1/2, p70S6K, CREB, p38 and JNK were measured simultaneously. The PTX significantly 

reduced the levels of JNK, NF-kB, p38, P70s6K, and STAT5 compared to the control group. 

Melatonin significantly reduced the cellular concentration of NF-kB, p70S6K, and STAT5. 

Importantly, the combination of PTX with melatonin resulted in depressed levels of JNK, 

CREB, NF-kB, p38, ERK1/2, p70S6K, and STAT5 (Figure 6). These results proved the role 

of the combination against SKOV-3 cell aggressiveness, thereby revealing its potential in the 

control of tumor growth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effects of melatonin and/or PTX on the cell signaling-related molecules in the 

SKOV-3 cells. 

      Concentrations of CREB, JNK, NF-kB p65, p38, ERK1/2, p70S6K, and STAT5 were 

evaluated in the supernatants of cell culture. Mel: melatonin. Data expressed as mean ± SEM 

of triplets. *P<0.05, **P<0.01, and ***P<0.001. 
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3.6. Effects of melatonin and PTX on the migratory and invasive capacity of SKOV-3 

cells. 

 

     To functionally investigate the effects of PTX and melatonin on the migratory and invasive 

potential of SKOV-3 cells, tumor behaviors were examined using transwell inserts. After 

SKOV-3 cells were seeded in 24-well plates, they were treated with different doses of 

melatonin alone or with PTX. The results showed that melatonin alone significantly reduced 

cell migration by 35% whereas PTX dramatically reduced its rate by 85% compared to the 

control. When melatonin was combined with PTX, an even greater decrease in cell migration 

was observed compared to melatonin alone (Figure 7 A and B). The invasive potential of 

SKOV-3 cells was markedly reduced by PTX alone compared to the control. In these cells, 

melatonin did not potentiate the effects of PTX against cell invasiveness (Figure 7 C and D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Effects of melatonin and PTX on the migration and invasion of SKOV-3 cells.  

     A) Effect of melatonin and PTX on the migratory capacity of SKOV-3 cells. B) Images of 

migrated cells after treatments. C) Effect of melatonin and PTX on the invasive potential of 

SKOV-3 cells. D) Images of invasive cells after treatments. Mel: melatonin.  Data were 

expressed as mean ± SEM of triplets. *P<0.05, **P<0.01, and ***P<0.001. 

 

4. DISCUSSION 

 

     This study provides new information related to the combined effect of 

melatonin and PTX on OC cells, with a focus on the TLR-mediated inflammatory pathway, 

cell signaling and cell survival.  

     PTX represents the gold standard treatment for OC; however its use often leads to 

chemoresistance (44, 45). As a natural molecule, melatonin exerts antitumor activity in a 

variety of cancers including OC. Its potential mechanisms are involved in reducing cell 

proliferation, migration, inflammation and stimulation of the immunity (39, 46). These 

mechanisms have been confirmed in the current study. Considering the beneficial effects of 

melatonin on chemoresistance in different cancers (47–50) it was selected to potentiate the 

antitumor effects of PTX on OC in the study. Herein, we first analyzed the intracellular 

melatonin concentration since melatonin can promote apoptosis in SKOV-3 cells. This has 

been reported previously that melatonin at 2.5 mM increased the tumor cell death (51). 

Especially, melatonin treatment at 3.4 mM level significantly reduced the viability of SKOV-

3 cancer stem cells after 48 h of incubation (52). In the current study, we also observed that the 
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major activity of melatonin on OC cells was to reduce their proliferation with the high 

efficiency at a concentration of 3.2 mM. At these respects, a combination of PTX and melatonin 

was used to treat SKOV-3 cells. The results showed that this combination significantly 

increased apoptosis and necrosis along with reduced tumor cell viability. This observation is 

consistent with previous report by Kim et al. (53) in which melatonin (2 mM) combined with 

cisplatin (80 µM) promoted apoptosis by activating caspase-3 in SKOV-3 cells or in type II 

A549 alveolar epithelial cells (54) and in HepG2 liver cells (55). The combination was 

effective against cell migration and invasion and these actions of melatonin and PTX might 

inhibit the metabolic activity of SKOV-3 cells since both molecules reduced the mitochondrial 

activity in the tumor cells. We have previously demonstrated that PTX lowers the viability and 

promotes cell death even after considerably lower levels of PTX (56). In addition, melatonin 

attenuated cell migration in several tumor types (57–59). Akbarzadeh et al. (52) also showed 

that melatonin at 3.4 mM reduced migration in SKOV-3 cells. Given that PTX alone caused a 

significant drop in the cell dynamics, this molecule might take a major role to attenuate tumor 

cell migration/invasion.  

     The promising effects of melatonin in the hormone-dependent cancers are related to its 

activities on apoptotic regulation, angiogenesis inhibition, tumor metabolism and cell survival 

(58). When combined with chemotherapeutic agents, it can potentiate chemosensitivity while 

mitigating the toxicity of the chemotherapies (60, 61). Women with OC often show a reduced 

plasma concentration of melatonin (50 pg/mL in OC versus 100 pg/mL in control subjects) 

(62). We verified that the OC cells had lower levels of melatonin than that of healthy ovarian 

cells. Moreover, the intracellular levels of melatonin were restored after PTX and melatonin 

treatments. Although there may be cellular uptake of melatonin in melatonin-treated tumor 

cells, the rise in intracellular melatonin after PTX treatment alone is of particular interest. One 

implication of these findings is that intracellular melatonin synthesis is inducible in animal 

cells as is well documented in plant cells (63). 

     TLR activation in the tumor microenvironment is related to drug resistance and disease 

progression (64–66). Our results documented that melatonin and PTX regulated TLR 

activation, specifically via TLR4 in the OC cell.  TLRs, especially TLR2 and 4, are important 

members involved with OC prognosis (67). Particularly, activation of the TLR4/MyD88/NF-

kB pathway is directly related to tumor progression and a worse prognosis (68, 69). In the 

current study, PTX did not decrease TLR4 expression and this is not surprising since the taxol 

class drugs are known to be a TLR4 agonist (70, 71). This feature of TLR4 may result in 

increased chemoresistance and poor prognosis in OC patients (69, 72). It has been reported that 

PTX promotes TLR4-mediated immunogenic cell death in OC (73) and stimulates the 

TLR4/NF-kB/ABCB1 signaling pathway in taxol-resistant SKOV-3 cells (67). By contrast, 

melatonin alone or combined with PTX significantly reduced the TLR4 expression in addition 

to the levels of MyD88 and TRIF, thus revealing it to be an effective agent acting against 

chemoresistance. The combination of PTX and melatonin also reduced downstream molecules 

of the TLR4 pathway, including NF-kB. 

     In previous study, by using the DMBA-induced OC animal model, we showed that long-

term (60 days) of melatonin (200μg/100g b.w.) treatment attenuated the TLR4-mediated 

inflammatory response (10). Although melatonin did not reduce the TLR2 levels in SKOV-3 

cells, it depressed TLR2 level in OC rats (10). This difference may be due to the cell types, 

melatonin concentrations or the duration of treatment. Melatonin combined with PTX 

attenuated the NF-kB p65 levels. In OC, NF-kB is associated with drug resistance (74), and 

DNA damage (75); thus, the inhibition of p65 transactivation is of great value. Melatonin has 

been proven to alter p65 subunit of the NF-kB, thus preventing its translocation to the nucleus 

and blocking the production of pro-inflammatory cytokines (68). The reduction of NF-kB 

activity by melatonin has already been demonstrated in experimental models of ovarian and 
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breast cancers (10, 76). The combination also reduced the expression of PD-L1 in SKOV-3 

cells. PD-L1 is highly expressed in OC cells, suppressing the immune system by binding to the 

PD-1 receptor on T lymphocytes, which results in tumor progression (77, 78). Women who 

exhibit high expression of PD-L1 in OC are often diagnosed at more advanced stages of the 

disease, with a high recurrence rate (79). Therapies targeting  PD-1 and PD-L1 have been 

investigated to evaluate the proper immune response and destruction of neoplastic cells (80, 

81). To date, this is the only study that has identified the action of melatonin on the PD-L1 

levels in OC, which could be considered for the regulation of immunological checkpoints of 

melatonin. 

     Our findings revealed that this combination further attenuated the levels of JNK, ERK 1/2, 

and p38 MAPK in SKOV-3 cells compared with their respective controls. The JNK pathway 

may be one of the mechanisms associated with cell migration, invasion, and metastasis (82) 

and, consequently, it may promote drug resistance and poor prognosis in OC (83). By inhibiting 

the JNK pathway, a reduction in cell growth with an increase in apoptosis and cell cycle arrest 

in OC cells has been observed (84). Likewise, CREB, an important transcription factor, is 

phosphorylated by several kinases, including ERK 1/2, Akt and p38, and its activation is related 

to the cell proliferation, apoptosis, angiogenesis, and metastasis (85). Our study demonstrated 

the effectiveness of the treatment in reducing CREB levels in SKOV-3 cells. It also reduced 

the transcription factor STAT5 and p70s6K ribosomal protein. The STAT family participate in 

oncogenic transformation and progression of the OC (86), and consequently, high levels of the 

kinases may be related to poor prognosis and OC development  (87). 

     PI3K/Akt pathway is altered in OC (88), and melatonin  attenuated PI3K and Akt levels in 

both animals and cells (43, 57). During tumor invasion and metastasis,  Akt/p70s6K pathway 

is often activated, serving as a potential prognostic marker for tumor chemoresistance (89). 

Melatonin reduced the MAPK signaling intermediates in different cancers (42, 59, 90–92), 

which reinforces its pivotal role against tumor cell survival. Overall, downregulation of these 

signaling molecules may negatively affect the biological activity of OC cells resulting in 

lowered proliferative and invasive capacity while inducing a higher apoptotic rate.    

     In conclusion, the study found that the combination of melatonin with PTX increased 

apoptosis and necrosis in SKOV-3 cells while also reducing the tumor cell migration and 

invasion. Moreover, this combination reduced the TLR4-mediated inflammatory pathway, PD-

L1 levels, and cell survival-related signaling molecules in OC (Figure 8). This combination 

may overcome chemoresistance to serve as an additional strategy in the treatment of OC. Since 

melatonin has very low or even no cellular toxicity, it may improve PTX sensitivity while 

reducing the adverse effects of chemotherapy. 
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Fig. 8. Schematic representation of the melatonin and PTX actions in different targets 

related to inflammation and survival of ovarian cancer cells.  

     The combined treatment attenuated different intracellular molecules and membrane 

receptors potentially resulting in inhibition of cell proliferation and chemoresistance while 

enhancing apoptosis. Red arrows indicate downregulated targets by treatment combination. 

TLR2, Toll-like 2 receptor; TLR4, Toll-like 4 receptor; MyD88, myeloid differentiation factor 

88; NF-kB, Nuclear Transcription Factor kappa B; PD-L1, Programmed Cell Death binding 

protein 1; TRIF, TIR-domain-containing adapter-inducing interferon-β; ERK 1/2, 

extracellular signal regulated protein kinase; CREB, Cyclic AMP response-element binding 

protein; STAT5, signal transducer and activators of transcription 5; p70S6K, 70 kDa 

ribosomal protein S6 kinase; PI3K,  phosphatidylinositol 3- kinase; Akt, protein kinase B; p38, 

mitogen activated protein kinase; JNK, c-Jun N-terminal kinases. 
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