SUPPLEMENTARY MATERIALS

Autoxidation of melatonin at excited state: mechanism proposal for formation of N¹-acetyl-N²-formyl-5-methoxykynuramine

Matheus Ruffo Peres¹, Vanessa Regina Miranda², Aguinaldo Robinson de Souza¹, Nelson Henrique Morgon² and Valdecir Farias Ximenes^{1,*}

¹Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, 17033-360, Bauru, São Paulo, Brazil. ²Department of Physical Chemistry, Institute of Chemistry, Campinas State University (UNICAMP), 13083-861, Campinas, São Paulo, Brazil. *Correspondence: valdecir.ximenes@unesp.br, Tel: +55 14 31036088

Fig. S1. Chromatograms before and after autoxidation of melatonin.

(A) pH 7.0 and (B) pH 10.0. The reaction conditions were: Melatonin 100 mM, UVC (12 W) irradiation for 60 minutes. Peaks (1) melatonin, (2) AFMK, and (3) hydroxy-melatonin.

Fig. S2. LC-MS chromatograms of melatonin before and after autoxidation.

The monitored molecular ion $(M+H)^+$ were 233 (melatonin), 249 (hydroxylated melatonin), and 265 (AFMK). (A) reaction conducted at pH 7.0, (B) reaction conducted at pH 10.0, and (C) Peaks of the molecular ions.

Table S1. Electronic energies and ZPE (in Hartree) of Melatonin (Ground and 1st Excited States).

Molecular System	GS/GS	EE/GS	EE/EE	ZPE
Ι	-764.40903	-764.25057	-764.26052	0.2747
II	-764.21167	-764.18203	-764.18059	0.2750
III	-763.91312	-763.77386	-763.78498	0.2687
IV	-763.75844	-763.71560	-763.71550	0.2612

Molecular systems obtained at [PBE0 / TD-PBE0-GD3(BJ)/6-311++G(3df,2p) level of theory using IEFPCM(water) to describe the solvent effect.

Fig S3. Frontier molecular orbitals of the studied species.

(I) Ground state melatonin, (I*) electronically excited melatonin, (II) ground state melatonin cation radical, (III) ground state deprotonated melatonin, (III*) electronically excited deprotonated melatonin, (IV) ground state melatonin radical.

Table S2. Cartesian Coordinates (in Å) of the ground state of the molecular system (I).

<u>Atomx y z</u> C -2.095-0.497-0.276 C -0.757-0.220-0.624

С	-0.2481.024 -0.323
С	-1.0492.008 0.304
С	-2.3541.734 0.638
С	-2.8800.465 0.346
С	1.037 1.639 -0.510
С	0.885 2.951 0.020
Ν	-0.3243.188 0.501
С	2.263 1.012 -1.047
Η	1.658 3.711 0.046
Η	-0.174-0.988-1.120
Η	-2.9762.479 1.122
Η	-3.9070.251 0.611
Н	2.006 0.256 -1.793
Η	2.892 1.763 -1.533
С	3.111 0.339 0.049
0	-2.518-1.739-0.593
С	-3.852-2.085-0.266
Н	-3.987-3.111-0.600
Н	-4.020-2.0270.812
Η	-4.565-1.435-0.783
Н	3.976 -0.128-0.422
Н	3.469 1.090 0.754
Ν	2.397 -0.6640.799
Η	1.957 -0.3961.664
С	2.158 -1.8980.318
0	2.590 -2.268-0.770
С	1.324 -2.7981.188
Η	1.098 -2.3662.163
Η	0.386 -3.0110.671
H	1.851 -3.7441.325

Obtained at $PBE0-GD3(BJ)/\overline{6-311++G(2d,p)}$ using IEFPCM(water) to describe the solvent effect.

Table S3. Cartesian Coordinates (in Å) of the ground state of the molecular system (II).

Ato	mx	у	Z	
С	-2.0	24-0.7	712-0.2	284
С	-0.7	40-0.2	298-0.5	596
С	-0.3	591.0	12 -0.3	805
С	-1.2	971.8	91 0.28	88
С	-2.5	851.4	77 0.59	99
С	-2.9	430.1	69 0.3	11
С	0.85	57 1.7	52 -0.4	88
С	0.60	08 3.0	14 -0.0)14
Ν	-0.6	743.1	03 0.45	53
С	2.14	6 1.2	31 -1.0)31

Η	1.264 3.871 0.022
Η	-1.0953.932 0.835
Η	-0.056-1.000-1.060
Η	-3.3012.151 1.057
Η	-3.944-0.1610.553
Η	1.949 0.488 -1.810
Η	2.711 2.040 -1.503
С	3.040 0.596 0.036
0	-2.324-2.007-0.592
С	-3.618-2.476-0.279
Η	-3.648-3.517-0.594
Η	-3.816-2.4190.795
Η	-4.389-1.915-0.818
Η	3.945 0.196 -0.423
Η	3.334 1.352 0.768
Ν	2.396 -0.4830.748
Η	1.737 -0.2431.471
С	2.436 -1.7620.332
0	3.114 -2.126-0.625
С	1.603 -2.7371.120
Η	1.064 -2.2741.947
Η	0.882 -3.2040.445
H	2.252 -3.5231.508

_

Table S4. Cartesian Coordinates (in Å) of the ground state of the molecular system (III)).
--	----

Aton	nx	У	Z	
. <u> </u>				
С	-2.02	7-0.7	13-0.2	45
С	-0.699	9-0.2	90-0.5	57
С	-0.340	61.00	9 -0.2	.95
С	-1.309	91.89	0 0.24	18
С	-2.600	61.48	36 0.54	18
С	-2.962	20.17	0 0.30	00
С	0.875	1.76	50 -0.4	-67
С	0.588	3.04	0.0-	31
Ν	-0.702	23.09	9 0.38	36
С	2.177	1.24	4 -0.9	42
Η	1.222	3.91	2 0.00)6
Η	-1.140	63.93	84 0.74	13
Η	-0.020	0-1.0	07-1.0	03
Η	-3.320	62.17	7 0.96	59
Η	-3.964	4-0.1	600.53	32
Η	2.024	0.49	96 -1.7	23

Η	2.767 2.057 -1.370
С	3.014 0.603 0.182
0	-2.262-1.984-0.522
С	-3.553-2.525-0.246
Η	-3.502-3.568-0.545
Η	-3.775-2.4510.819
Η	-4.315-2.005-0.830
Η	3.960 0.274 -0.251
Н	3.227 1.343 0.953
Ν	2.380 -0.5270.810
Η	1.913 -0.3961.692
С	2.382 -1.7570.256
0	2.913 -1.977-0.828
С	1.696 -2.8391.042
Η	1.211 -2.4731.947
Η	0.953 -3.3210.405
Η	2.436 -3.5941.315

Table S5. Cartesian Coordinates (in Å of the ground state of the molecular system (IV).

Aton	ıx	У	Z
С	-2.160)-0.777	-0.332
С	-0.946	5-0.264	-0.754
С	-0.556	51.015	-0.325
С	-1.422	21.777	0.533
С	-2.639	91.231	0.938
С	-3.008	8-0.037	0.511
С	0.582	1.839	-0.537
С	0.311	3.000	0.192
Ν	-0.876	52.994	0.838
С	1.827	1.501	-1.292
Η	0.966	3.866	0.261
Η	-0.323	3-0.865	5-1.411
Η	-3.303	31.793	1.589
Η	-3.955	5-0.450	0.836
Η	1.587	0.882	-2.165
Η	2.300	2.411	-1.675
С	2.867	0.763	-0.448
0	-2.472	2-2.035	5-0.792
С	-3.682	2-2.608	8-0.357
Η	-3.735	5-3.596	5-0.812
Η	-3.710)-2.713	30.732
Η	-4.549	9-2.019	0.680

-	
Η	3.716 0.439 -1.055
Η	3.251 1.434 0.328
Ν	2.277 -0.4080.158
Η	1.297 -0.3450.395
С	2.943 -1.5350.437
0	4.146 -1.6790.210
С	2.124 -2.6411.052
Η	1.065 -2.3951.134
Η	2.237 -3.5410.445
Η	2.518 -2.8612.046

Table S6. Cartesian Coordinates (in Å) of the ground state of O2.

Atomx y z

O 0.0000.0000.598 O 0.0000.000-0.598

Obtained at PBE0-GD3(BJ)/6-311++G(2d,p) using IEFPCM(water) to describe the solvent effect.

Table S7. Cartesian Coordinates (in Å) of the ground state of the O₂⁻ (GS).

Atomx y z

O 0.0000.0000.662

O 0.0000.000-0.662

Obtained at PBE0-GD3(BJ)/6-311++G(2d,p) using IEFPCM(water) to describe the solvent effect.

Table S8. Cartesian Coordinates (in Å) of the 1st EE of the molecular system (I)

Atomx y z

C -2.083-0.488-0.286 C -0.762-0.226-0.638

Melatonin Res. 2022, Vol 5 (3) 325-334; doi: 10.32794/mr112500135

С	-0.2281.034 -0.335
С	-1.0182.032 0.300
С	-2.3241.769 0.639
С	-2.8600.495 0.344
С	1.042 1.615 -0.521
С	0.917 2.952 0.021
Ν	-0.2743.220 0.504
С	2.268 0.981 -1.054
Η	1.715 3.689 0.040
Η	-0.179-0.994-1.138
Η	-2.9452.514 1.128
Η	-3.8900.291 0.613
Η	2.012 0.215 -1.793
Η	2.904 1.726 -1.544
С	3.108 0.313 0.058
0	-2.542-1.730-0.594
С	-3.879-2.053-0.253
Η	-4.030-3.081-0.583
Η	-4.039-1.9910.828
Η	-4.591-1.398-0.768
Η	3.976 -0.162-0.404
Η	3.464 1.067 0.764
Ν	2.378 -0.6830.806
Η	1.932 -0.4051.667
С	2.131 -1.9200.325
0	2.573 -2.298-0.765
С	1.277 -2.8111.188
Η	1.069 -2.3902.174
Η	0.327 -2.9890.676
H	1.776 -3.7761.306

Table S9. Cartesian	Coordinates (in Å)	of the 1st EE of the	molecular system (II).

Atom	ıx	у	Z
С	-2.060	-0.643	-0.256
С	-0.713	-0.291	-0.596
С	-0.301	1.022	-0.297
С	-1.214	1.931	0.257
С	-2.536	1.609	0.559
С	-2.946	0.250	0.301
С	0.938	1.717	-0.478
С	0.739	3.044	-0.034

Ν	-0.5393.127 0.396
С	2.205 1.148 -0.971
Η	1.417 3.879 0.014
Η	-0.9543.971 0.765
Η	-0.063-1.031-1.045
Η	-3.2222.327 0.988
Η	-3.955-0.0480.547
Η	2.009 0.385 -1.730
Η	2.824 1.928 -1.424
С	3.038 0.495 0.153
0	-2.355-1.934-0.540
С	-3.659-2.390-0.244
Н	-3.691-3.437-0.542
Η	-3.870-2.3060.826
Н	-4.409-1.824-0.805
Н	3.962 0.115 -0.282
Η	3.292 1.243 0.905
Ν	2.366 -0.5930.812
Η	1.783 -0.3881.606
С	2.305 -1.8320.281
0	2.884 -2.122-0.762
С	1.516 -2.8481.060
Η	0.975 -2.4181.902
Η	0.809 -3.3360.388
H	2.204 -3.6121.432

Table S10. Cartesian Coordinates (in Å) of the 1st EE of the molecular system (III).

Atom	IX	у	Z
С	-2.071	-0.509	-0.271
С	-0.710	-0.235	-0.607
С	-0.208	0.996	-0.310
С	-1.058	1.964	0.299
С	-2.398	1.699	0.630
С	-2.899	0.459	0.344
С	1.089	1.626	-0.500
С	0.955	2.888	-0.021
Ν	-0.329	3.079	0.455
С	2.303	0.975	-1.058
Η	1.672	3.692	0.025
Η	-0.665	3.943	0.856
Н	-0.132	-1.014	-1.091

Η	-3.0182.455 1.097
Η	-3.9250.223 0.588
Η	2.013 0.249 -1.821
Η	2.936 1.721 -1.545
С	3.153 0.264 0.002
0	-2.469-1.717-0.584
С	-3.812-2.131-0.308
Η	-3.875-3.153-0.669
Η	-4.000-2.0980.764
Η	-4.517-1.497-0.845
Η	3.980 -0.243-0.496
Η	3.571 0.998 0.691
Ν	2.424 -0.7020.791
Η	2.139 -0.4481.722
С	2.084 -1.9160.322
0	2.365 -2.274-0.818
С	1.333 -2.8101.270
Η	1.134 -2.3462.236
Η	0.386 -3.0970.809
H	1.914 -3.7211.425

			•					
Table S11	Cartesian (Coordinates ((in Å) o	f the 1st	EE of th	he molecular	system ((\mathbf{IV})
	Cartestan	Cool anales	(m 11) U	i une ist		ne morecular	system	(1 7)•

Atom	IX	у	Z
С	-2.022	-0.060	-0.315
С	-0.657	-0.073	-0.731
С	0.116	1.029	-0.339
С	-0.436	2.146	0.300
С	-1.804	2.200	0.602
С	-2.577	1.023	0.329
С	1.504	1.343	-0.535
С	1.669	2.655	-0.013
Ν	0.534	3.134	0.496
С	2.529	0.413	-1.048
Η	2.595	3.216	0.035
Η	-0.244	-0.942	-1.228
Н	-2.245	3.043	1.121
Н	-3.624	1.013	0.606
Н	2.096	-0.223	-1.825
Н	3.375	0.955	-1.483
С	3.078	-0.499	0.072
0	-2.710	-1.196	-0.646

Melatonin Research (Melatonin Res.)

http://www.melatonin-research.net

С	-4.073-1.250-0.296
Η	-4.440-2.219-0.633
Η	-4.209-1.1670.787
Η	-4.644-0.455-0.787
Η	3.708 -1.269-0.376
Η	3.695 0.092 0.751
Ν	2.057 -1.1450.861
Η	1.603 -0.5691.555
С	1.322 -2.1810.378
0	1.644 -2.787-0.650
С	0.184 -2.6251.252
Η	-0.263-1.7941.801
Η	-0.579-3.1000.637
Η	0.546 -3.3611.980

Obtained at PBE0-GD3(BJ)/6-311++G(2d,p) using IEFPCM(water) to describe the solvent effect.

This work is licensed under a Creative Commons Attribution 4.0 International License

Please cite this paper as: Peres, M.R, Miranda, V.R, de Souza, A.R, Morgon, N.H and Ximenes, V.F 2022. Autoxidation of melatonin at excited state: mechanism proposal for formation of N¹-acetyl-N²-formyl-5-methoxykynuramine. Melatonin Research. 5, 3 (Sep. 2022), 325-334. DOI:https://doi.org/https://doi.org/10.32794/mr112500135.