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ABSTRACT 

 

     Exposure to constant light or darkness for long periods has diverse effects on circadian 

physiology. Iron (Fe) overloading promotes oxidative stress and causes alterations in cellular 

structure and function in animals and humans. The aim of this study is to evaluate the 

interactions among serum melatonin (ML), photoperiod manipulation, and Fe overloading in 

rats. The results showed that constant darkness exposure for 15 days significantly increased 

serum ML levels (up to 22%) while the constant light exposure failed to reduce the serum ML 

level compared to the normal light/dark cycle treated rats. The lost serum ML level usually 

from the pineal gland under the long term of constant light exposure may be compensated by 

ML generated by other organs which adapted to the situation. Also, Fe overloading decreased 

ML production due to this molecule being consumed to scavenge the free radicals induced by 

the Fe overloading. In addition, we observed interactions among constant light or darkness 

exposure, Fe overloading and serum ML level. Overall, our results support the hypothesis of 

ML as scavenging molecule; it may be an effective therapeutic tool in iron-induced oxidative 

stress. 
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___________________________________________________________________________ 

 

1. INTRODUCTION  

 

     Melatonin (ML) production of pineal gland is controlled by the light-dark cycle (LDC). The 

pineal ML is typically synthesized during darkness and suppressed by daylight, resulting in a 

circadian rhythm (1). Thus, ML is an important component of the circadian system and has 

been proposed as a link between the presence/absence of light and its effects on animal 

behavior and physiology (2-5). 

     ML plays multiple roles in animal physiology. This molecule, produced by the pinealocytes, 

enters the circulatory system and binds to receptors on a variety of target tissues to exert its 

physio-biochemical responses (6, 7). The major function of pineal ML is to relay information 

about changes in photoperiod (3, 8, 9). Additionally, among its physiological functions, this 
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molecule has sedative, hypnotic, analgesic, and anti-inflammatory properties that make it an 

attractive alternative for premedication in anesthesia for both animals and humans (6, 10). 

     ML is not only synthesized in the pineal gland, but other sources of extrapineal ML are 

present including the Harder gland, retina, skin, intestine and among others (11, 12). ML 

concentration in some of these tissues appears to be higher than that found in plasma (13). For 

example, ML levels in the gastrointestinal tract are 10-100 times higher than that in serum (14-

16). Also, high level of ML was detected in the thymus of rats which was two orders of 

magnitude higher than that in serum (17). At the cellular level, ML is positively linked to cell 

maintenance (18) and mitochondrial activity (19-21). 

     ML also plays an important role as a free radical scavenger and antioxidant, reducing 

oxidative stress in organisms (for reviews, see 4, 19, 22). Oxidative stress occurs when the 

steady-state concentration of reactive oxygen species (ROS) increases in body due to an 

imbalance between the production of ROS and the availability of antioxidants (23). Brain is 

the easy target of oxidative stress due to its high iron loading with other factors. 

     In the current study, we will investigate brain oxidative stress and its relationship with ML 

using a rat model overloaded with iron (Fe) which is a common model for neuronal oxidative 

stress (24-27). 

     Fe is an essential bioactive element required for cellular and body’s normal physiology. 

Clinical and epidemiologic observations indicate that increased Fe storage status is a risk factor 

in several diseases (28, 29). Fe is an important mediator of cell oxidative damage, especially, 

under the condition of its overloading to catalyze an increase in the steady state concentration 

of ROS (28). Free radical-mediated oxidative stress in cells is one of the main causes of 

alterations in cellular structure and function due to Fe overloading (30, 31). The toxicity of 

superoxide anion (O2
.−) and hydrogen peroxide (H2O2) arises from their Fe-dependent 

conversion into the extremely reactive hydroxyl radical (•OH) via Haber–Weiss reaction to 

generate severe damage to membranes, proteins, and deoxyribonucleic acid (DNA) (32). 

Naturally, organisms have antioxidative mechanisms including proteins that preserve Fe 

homeostasis and keep most of this metal sequestered, preventing free Fe from catalyzing free 

radical reactions (33). Ferroptosis (34) is a mechanism for non-apoptotic, iron-dependent, 

oxidative cell death. Ferroptosis is crucially involved in neurological diseases, including 

neurodegeneration, stroke and neurotrauma (for review, 35).  

     Several studies have shown the suppressive effect of ML against iron-induced oxidative 

stress (27, 36, 37). 

     The administration of different compounds and quantities of Fe, either as a dietary 

supplement or intraperitoneal injection, leads to an increase of Fe in several tissues and plasma 

(38). Among the various formulations used for iron supplementation, Fe-dextran (Fe-D) 

injection seems to be a suitable model for the study of iron toxicity since the pathological and 

clinical consequences of its administration resemble those of acute Fe overloading in humans 

(29). 

     In a Fe-D intraperitoneal injection model of rats, Galleano and Puntarulo (39) reported a 12-

fold increase of Fe concentration in plasma 20 h after injection compared to control values. 

Similarly, in a previous study of the same model, we found a 5-fold increase of Fe in the brain 

6 h after injection compared to control values (25). Since the studies related to the relationship 

between circulating ML level and iron are scarce (40-42), the aim of this work is to study the 

effects of Fe overloading on serum ML levels under the conditions of photoperiod 12L:12D or 

under the constant LDC. 
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2. MATERIAL AND METHODS  

 

2.1. Experimental designs.  

  

     Forty male Sprague-Dawley rats weighing between 215 to 245 g were acclimated for 2 

weeks at a room temperature of 22±2º C and under a normal light-dark cycle (LDC) of 12L:12D 

(lights on at 8:00 am). Then, the rats were randomly divided into 8 groups, with 5 animals per 

group, and were housed in cages with ad libitum access to food and water.  

     The experimental groups were as follows (Table I): (1) control group (CG), in which the 

animals were only injected with vehicle under normal LDC; (2) ML, in the rats were only 

injected ML dissolved in the vehicle; (3) LL, in which rats exposed to constant light; (4) DD, 

in which  rats were exposed to constant dark; (5) Fe group (IG), in which the rats were injected 

with Fe-D under normal LDC; (6) IG+ML, in which the rats were injected with Fe plus ML 

under normal LDC; (7) IG+LL, in which the rats were injected Fe and exposed to constant 

light, and (8) IG+DD, in which  rats were injected Fe and exposed to constant dark (See the 

details of each treatment below).  

     In all groups, to prevent viscera penetration, intraperitoneal (i.p.) injections of ML or Fe-D 

were performed in the lower left abdominal quadrant of each rat using a 25 G x 5/8 needle, 

with a dosing volume of 1.2 mL/rat. The zeitgeber time (ZT, where ZT0 = lights on) was 

considered for the time of injections (ZT= 0 for Fe-D and ZT= 4 for ML).  

     The experimental protocol was approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Morón (Acta Nº 1, 3/21/2022). Experimental animals 

were treated according to the Canadian Council on Animal Care (https://ccac.ca/en/guidelines-

and-policies/the-guidelines/) as well as according to ARRIVE guidelines 

(https://arriveguidelines.org/). 

 

Table I. Experimental design.  

 

Groups 

Day D1 D15 

Hour 8 am 12 pm 16 pm 8 am 12 pm 16 pm 

ZT 0 4 8 0 4 8 

CG -- cv bs -- -- -- 

ML -- ML bs -- -- -- 

LL -- -- -- -- cv bs 

DD -- -- -- -- cv bs 

IG Fe-D cv bs -- -- -- 

IG+ML Fe-D ML bs -- -- -- 

IG+LL -- -- -- Fe-D cv bs 

IG+DD -- -- -- Fe-D cv bs 

 

Groups: CG, control; ML, melatonin; LL, constant light exposure; DD, constant dark 

exposure; IG, iron; IG+ML, iron+melatonin; IG+LL, IG in constant light exposure; IG+DD, 

IG in constant dark exposure. ZT: zeitgeber time. Procedure: cv, control vehicle (ip); ML, 

melatonin 50 mg/kg (ip); Fe-D, Fe-dextran 500 mg/kg (ip); bs, blood sample collection. 

 

2.2. Melatonin treatment. 

  

     The ML group (ML) and Fe+melatonin group (IG+ML) received a single dose of 50 mg/kg 

body weight of ML (Sigma-Aldrich, St. Louis, MO, USA), which was administered at 12:00 
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pm (ZT= 4). The ML dose was established according to our previous work (10) and reported 

in the literature (43-45).  

     ML solution was prepared with the milligrams of ML to be used in five rats according to 

their weights. ML was first dissolved in 0.2 mL of absolute ethanol (Sintorgan®) and then 

diluted with 0.9% saline till to a final volume of 6.0 mL. The final ethanol concentration was 

less than 3.3%, and a final ML concentration was 9.6 mg/mL.  

     Both in the condition with or without Fe, ML was injected during the circadian time ZT= 4, 

when endogenous ML levels are minimal (46). The serum ML concentration in blood was 

evaluated after 4 h of its intraperitoneal injection.  

     The vehicle (CG) was also injected with the volume as ML rats at 12:00 pm (ZT= 4). 

 

2.3. Iron treatment. 

 

     To evaluate the effect of Fe on ML levels, blood samples were obtained 8 hours after acute 

Fe-D overloading and at this period the serum Fe level was high (25).  

     In the Fe groups (IG; IG+ML; IG+LL, and IG+DD), each animal received a single dose of 

500 mg/kg body weight of (Sigma-Aldrich, St. Louis, MO, USA) at 8 am (ZT= 0).  

     Four hours later (ZT= 4) after Fe-D injection, ML at the dose of 50 mg/kg body weight was 

injected in the IG+ML group (Table I). The delay in ML administration was due to the fact that 

maximum Fe concentration was determined 6 h after its injection (25). This procedure ensures 

high ML level to match the high Fe-D concentration, therefore, to better evaluate its antioxidant 

capacity. In fact, the serum ML concentration in CG is the reference of the normal serum ML 

content and can be used to compared the melatonin in the IG group (Table II).  

 

2.4. Treatment with constant light exposure. 

  

     Two groups of rats were kept in an environment illuminated with two fluorescent tubes 

(Philips TL-D 36W 840 Super 80; light color: 4000K - cool white; luminous flux: 3350 Lm). 

Rats were treated with constant light exposure (LL) for 15 days. On day 15, the ML or Fe-D 

were injected in CG+LL and IG+LL, respectively, as described above. 

 

2.5. Treatment with constant dark exposure. 

  

     Two groups were kept in an environment with constant dark (DD) for 15 days. On day 15, 

the ML or Fe-D were injected in CG+DD and IG+DD groups, respectively, as described above. 

The cage cleaning, feeding, and handling of the animals were carried out with red light 

(incandescent lamp, 25W) kept 3 m away from the animals. 

 

2.6. Preparation of blood samples. 

  

     To avoid the influence of the photoperiod on circadian rhythms, blood collection in all 

experimental groups was at 4 pm (ZT= 8).  

     Blood samples were taken from the heart of anesthetized animals in a CO2 chamber. 

Samples were taken four hours after vehicle or ML injection in CG and ML groups, and eight 

hours after Fe-D injection in IG and IG+ML groups. Similarly, the process of blood collection 

was repeated on day 15 for CG+LL, IG+LL, CG+DD and IG+DD groups. All samples were 

collected from 4 to 4:30 pm immediately after being brought out from the experiment. Five-

milliliter blood was collected and stored at room temperature for 10-20 min to clot. After 

centrifugation at 3000 rpm for 10 min, the serum was collected and stored at -20º C for future 

analysis. All the procedures described were performed under dim artificial light. 
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2.7. Melatonin measurement. 

  

     Serum ML levels were measured using the ELISA assay (Melatonin ELISA Kit (ab213978), 

Abcam), according to the instructions provided by the manufacturer. 

 

2.8. Statistical analyses. 

  

     Two-Way ANOVA and post-hoc All Pairwise Multiple Comparison Procedures (Tukey 

Test) were used for statistical analysis of the data (SigmaStat 3.5, Systat Software, Inc). All 

data were expressed as mean and standard deviation (SD) with a significance level of p < 0.05. 

 

3. RESULTS  

 

     The results are presented in Table II. A significant difference was observed in serum ML 

levels among groups for both conditions (with/out Fe, p < 0.001) also for different treatment 

(control, melatonin, LL and DD, p < 0.001) and their interactions (p < 0.001) (Figure 1). 

 

Table II. Serum levels of melatonin (pg/mL) in different groups. 

. 

Groups Mean SD Median Minimum Maximum p 

CG 289.4 32.65 289.0 249.7 340.1 --- 

ML 504.4 91.43 503.0 425.0 653.6 < 0.001vs CG 

LL 317.6 36.68 317.6 281.9 374.6 0.854 vs CG 

DD 353.1 16.92 353.1 336.2 371.0 0.044 vs CG 

IG 199.9 61.50 229.1 115.9 267.1 0.016 vs CG 

IG+ML 455.1 95.18 454.1 347.5 604.8 
< 0.001vs IG 

0.172 vs ML 

IG+LL 33.9 25.26 22.4 7.5 62.4 
< 0.001vs IG 

< 0.001 vs LL 

IG+DD 32.9 20.18 19.8 17.4 57.3 
< 0.001vs IG 

< 0.001 vs DD 

 

SD: standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Serum levels of melatonin (pg/mL) in different experimental groups  

     Data were expressed as mean ± SD. *: p < 0.05 vs CG, #: p < 0.05 vs IG, **p < 0.05 vs 

CG. CG, control group; ML, melatonin group; LL, continuous light exposure; DD,  continuous 

dark exposure; IG, iron group; IG+ML, iron+melatonin group; IG+LL, IG in continuous light 

exposure; IG+DD, IG in continuous dark exposure.  
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     Injection of ML (50 mg/kg) resulted in ML increase (74%) in serum compared to the CG, 

showing significant differences even 4 hours after ML administration in the illuminated phase 

of the LDC. Injection of Fe-D (500 mg/kg) caused a significant decrease (31%) of serum ML 

compared to CG. Administration of Fe-D and ML (IG+ML) resulted in a significant increase 

of serum ML level compared to IG, but slightly lower than the ML group (p > 0.05).  

     While a constant light exposure of 15 days produced a slight but not significant increase in 

endogenous ML compared to the control (p > 0.05). In the presence of ion, an abruptly reduced 

serum ML up to 17% was observed compared to the CG group (p < 0.001) and to 11% in the 

CG+LL group compared to the IG group (p < 0.001) (Table II and Figure 1).  

     The rats with constant dark exposure of 15 days (DD) had a significant higher ML level 

(22% higher) than that in the CG (p < 0.05); however, in the presence of Fe, this increase was 

dropped to 16% of its original level (IG+DD vs IG) (p < 0.001) and to 9% compared to the 

CG+DD (p < 0.001) (Table II and Figure. 1). 

 

4. DISCUSSION 

 

     In the present study we demonstrated that high levels of Fe in blood were associated with a 

decreased ML production. In addition, the potential associations between serum ML and the 

different photoperiodic exposure including the constant light (LL) or darkness (DD) exposure, 

and the high level of Fe in blood were uncovered. 

     The serum ML levels and their variations in our study were consistent with those observed 

in the previous studies (46-49). Comparing to the baseline of animals who were exposed to a 

normal 12L:12D photoperiod with ML injection had a significantly high serum ML 

concentrations. This result was different from those observed by Farhadi et al. (49) in which 

the oral ML administration did not change serum ML levels in rats exposed to 12L:12D 

light/dark cycle for 10 days. This difference may be due to the ML dose differences since the 

dose in our study was five times higher than that they used and the delivery methods were also 

different.  

     In addition to pineal gland, the retina and CNS, together with their interconnections, 

constitute the main circadian axis (1, 24, 50). The LDC mediates a series of non-visual 

responses through this circadian axis that involves, among others, the phase change of the 

internal circadian clock and the rhythm and ML production levels, both daily and seasonally.  

     In vertebrates, including humans, constant light exposure alters many aspects of their 

circadian rhythm and has negative effects on their physiology. The negative physiological 

effects of constant light exposure include alterations in growth (51), the accelerated aging (52), 

the increased depression and anxiety (53), an increased risk of cancer (54), and generally, a 

negative impact on immune function (55, 56). The absence of a circadian signal is likely to be 

a strong driver that underlies these effects. However, similar effects are evidenced in response 

to an extension (in the number of hours) of exposure to light or dim light during the period of 

natural darkness (57, 58). All together, these studies suggest that the light in natural darkness 

could be the reason for behavioral and physiological alterations (59, 60). 

     There are no conclusive results from the literature on the effects of a constant or prolonged 

period of illumination on serum ML levels and their circadian rhythms. Our results showed 

that after exposure to constant light for 15 days (LL), serum ML concentrations of the rats did 

not exhibit significant changes compared to the rats with normal LDC. The results were 

consistent with Farhadi et al. (49) in which, they also demonstrated that 10 days of constant 

light exposure failed to induce serum ML changes in rats. However, in several other studies, it 

was reported that animals kept under constant light for one or two weeks, were enough to 

inhibit their ML production of the pineal glands in chickens (40), hamsters (61) and rats (62, 

63). 
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     In the present study, the lack of change in serum ML after constant light exposure could be 

explained by (a) the function of the pineal gland in the long term of constant light exposure is 

not affected (64, 65), and (b) the decreased pineal ML secretion with long term of illumination 

was compensated by other ML secreting organs, such as the Harder gland, restoring the serum 

ML level (3, 49). 

     On other hand, behavioral and neural consequences of exposure to constant darkness have 

been reported in laboratory animals (66, 67). Rats under constant darkness for several weeks 

exhibited distinct behavioral and anatomical features that are similar to characteristics of 

depressed patients in humans (68). In humans, it has been demonstrated that the circadian 

system is disturbed during the polar winter, largely due to insufficient bright light (69). 

     In this study, the constant dark exposure for 15 days in rats (DD) significantly increased 

their serum ML levels (up to 22%). The results were consistent with the observations of the 

other studies (49, 63, 70, 71). Reiter et al. (1) have documented that ML production in the 

pineal gland starts at the beginning of the dark stage of the day, and that the maximum 

production occurs in the middle of the night. Cardinali and Pévet (72) demonstrated that longer 

nights result in a longer duration of ML secretion. Then, in relation to our results, it is possible 

that during constant dark exposure, the function of ML production system is increased. 

     In addition to light, other factors including Fe can also influence the ML production. Fe is 

essential to life, but, an excess has toxic effects due to its ability to catalyze free radical-

producing reactions (73). Iron-mediated oxidative stress has been classically linked to cell 

death by apoptosis and more recently to ferroptosis, which represents a form of non-apoptotic 

cell death dependent on iron. The Fe levels in different tissues are dependent on the 

administration protocol, in oral, or in parenteral form (25, 74, 75). For example, parenteral Fe 

administration sharply increases serum Fe, exceeding the physiological capacity to bind 

circulating Fe and leading to a situation of oxidative stress in plasma. 

     In this study, we have observed that the acute administration of Fe-D significantly decreases 

the blood ML levels (31%), at 8 h after injection. When ML was injected to the rats with Fe 

overloading, a non-significant decrease in serum ML was observed compared to ML group. 

     Several studies have reported that ML has suppressive effect against iron-induced oxidative 

stress and injury (42) and in several tissues, including the brain and liver. The mechanisms may 

be involved in the antioxidative capacity of melatonin including: (i) as a free radical scavenger 

(76-80), (ii) as an antioxidative enzyme activator (81, 82), (iii) as a Fe chelator (36), (iv) 

regulating Fe metabolism (83). 

     Hernando et al. (27) have suggested that the increased ROS as a result of the presence of Fe 

in rat brains can be scavenged by ML and thus decrease its level as we have observed in the 

study. On the other hand, when ML functions as an iron-chelator, a decreased ML 

concentration in blood is expected when Fe level is high after acutely administered. 

Unfortunately, with the ELISA kit used in this study it was not be possible to detect the complex 

of melatonin-iron. 

     Othman et al. (83) demonstrated that ML ameliorated oxidative stress caused by adriamycin 

via regulating Fe levels. In the study, where ML (15 mg/kg) was used before and concurrently 

with adriamycin in rats, it significantly decreased plasma Fe levels compared with rats treated 

only with adriamycin. 

     Iron injections in rats could also resulted in the ML accumulation in liver and kidney of 

these rats (84, 85). This increased ML level could be used to protect these organs against the 

ROS. Therefore, the increase in hepatic and renal ML may be due to an increase in the 

biosynthesis of extrapineal ML for each organ (86, 87) or ML mobilization from the plasma to 

these organs, with the consequence of the reduced serum ML. 

     The influence of the LDC on ROS levels in the rats CNS has been studied. Both constant 

light (LL) and constant darkness (DD) alter the oxidative state of brain structures, with changes 
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in the levels of various antioxidant enzymes (88). Also, constant light influences circadian 

oscillations of circulatory lipid peroxidation, antioxidants, and some biochemical variables (89) 

and was associated with increased oxidative stress and adriamycin-induced nephropathy (90) 

in rats. On the other hand, ML acts as a direct scavenger of toxic radicals and stimulates the 

activity of the antioxidant enzyme GSH-Px to detoxify the hydroxyl radical produced by 

constant light exposure (82). Túnez et al. (90) reported that all pathological changes induced 

by both adriamycin and constant light were reversed to normal by ML administration. ML 

treatment decreased lipid peroxides, favored the recovery of reduced glutathione, antioxidant 

enzyme activity, and parameters of renal function. 

     In the LL group, no differences in the endogenous ML concentration were determined in 

the rats without Fe injection compared to the control group. However, in the DD group without 

Fe injection an increase in serum ML concentration (up to 22%) was observed due to the result 

of changes in photoperiod. 

     The fact that serum ML decreased 17% in the presence of Fe regardless of light exposure 

compared to its initial values (IG) supported the hypotheses of ML as a radical scavenger or 

iron-chelator.  In presence of Fe, an increase in the ROS level (data not shown) under the LL 

or DD for 15 days caused physiological responses in relation to the ML concentration. 

     Overall, our results support the hypothesis of ML as scavenging molecule, stimulated by 

the presence of ROS generated by increased Fe level and exposure to LL and DD. Thus, it is 

expected that ML supplementation will restore the redox balance through the suppression of 

ROS (22).  

     In conclusion, the results confirmed that prolonged exposure to constant light or darkness, 

especially to darkness, had profound effects on the circadian axis. We demonstrated that 

constant darkness exposure in rats leads to an increase in serum ML, while constant light has 

no influence on ML level, possibly due to compensation of ML productions by other organs. 

Both exogenous ML and photoperiodic manipulation, if administered properly, can gradually 

modify the circadian system and modulate endogenous ML. Additionally, the increased Fe 

significantly lowered the ML level due to the mechanism that Fe increased ROS formation and 

ML was consumed as a free radical scavenger. The results support the idea that this molecule 

may be an effective therapeutic tool in iron-induced oxidative stress. 
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