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ABSTRACT 

     Red blood cells (RBCs) or erythrocytes are highly vulnerable to oxidative stress due to 

their absence of nuclei and mitochondria, presence of iron containing heme and high amounts 

of fatty acids in their uniquely constructed lipid bilayer membrane. The principal function of 

RBCs is to carry oxygen to tissues. Thus, RBCs have to pass through the micro-capillaries in 

which it requires these cells exhibits high structural deformability and great elasticity. The 

intact cytoskeletal architecture and proper membrane fluidity of RBCs are crucial for their 

deformability. Many factors can jeopardize the structural and functional harmony of RBCs. 

One of them is ROS which causes RBC oxidative injuries manifested by hemolytic anaemia 

such as occurring in β-thalassemia. Melatonin, as a potent free radical scavenger and 

antioxidant, can effectively protect against RBC oxidative injuries. In addition, melatonin 

chelates the free iron and upregulates gene expression of antioxidant enzymes of RBCs. 

Melatonin is synthesized and highly accumulated in RBCs to exhibit the on-site protection. 

All of these indicate that melatonin is a best molecule to preserve the structural and 

functional intactness of RBCs.  This review tries to update the current development in the 

field and suggests the potential utility of melatonin on the RBC related disorders.    

 

Key words: erythrocyte, red blood cell (RBC), oxidative stress, antioxidants, melatonin. β-
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___________________________________________________________________________ 

 

1. INTRODUCTION 

 

     Red blood cell (RBC) is a key component of life for vertebrates. Its primary functions are 

to carry and deliver oxygen to cells and in turn, to transport carbon dioxide out of the body. 

In this way, it helps to maintain the systemic acid-base equilibrium of organisms (1). 

Moreover, RBC serves as a redox state regulator by keeping the delicate balance between 

highly oxidative molecule (such as haemoglobin) and antioxidants (2).  
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     Deformability is the primary criteria for RBC to pass through the microcirculation and 

deliver oxygen as well as nutrients to every part of the tissues and cells (3). For this purpose, 

the unique structure of RBC contributes to its proper functional state.  RBC, except its ability 

of self-defence, can also protect other organs and tissues from deleterious oxidative stress due 

to its well-equipped antioxidant machineries (4, 5). It acts as the unique mobile free radical 

scavenger (6) and sensor of hypoxic condition occurring in the tissues. It releases nitric oxide 

(NO) as a signal to regulate the oxygen need in oxygen deprived tissues (7). Oxygen 

metabolism produces reactive oxygen species (ROS). Organisms have developed the 

endogenous antioxidant system during evolution to detoxify the harmful ROS. Imbalance of 

ROS production and detoxification leads to oxidative stress in organisms. In addition to the 

endogenous ROS formed as the by-products of aerobic respiration, several exogenous sources 

of ROS formation are also responsible for oxidative stress in organisms (8). Many clinical 

and patho-physiological conditions are attributed to the RBC oxidative stress (9). Lack of 

nuclei and mitochondria in RBC makes it incapable to synthesize new antioxidant enzymes 

and this increases the vulnerability of RBCs to oxidative stress (10, 11). Hemoglobin, the 

principle molecule being responsible for oxygen delivery, mostly remains in oxygenated 

status and subsequently leads to production of reactive oxygen intermediates. Additionally, 

the active heme component of hemoglobin contains iron in its ferrous state and when it binds 

to oxygen, the ferrous iron catalyses Fenton reaction, a prominent way of hydroxyl radical 

generation (12). It has been estimated that roughly 3% of hemoglobin undergoes autoxidation 

every 24 hours to produce methemoglobin (hemoglobin iron in ferric state) accompanied with 

formation of deleterious superoxide anion (13), which will be further amplified by many 

folds under stressful conditions (5). The released ferric iron from methemoglobin induces 

Haber-Weiss reaction to generate additional hydroxyl radicals (2). As mentioned above, 

many exogenous insults also cause RBC oxidative stress. Sometimes, these are the major 

causative factors related to RBC injuries (14). Oxidative stress of RBC has drawn a great 

attention of researchers since RBC can serve as a potent sensor of stress signals in mammals 

(15). Structurally, RBC has to experience tremendous osmotic stress when it passes through 

lung and kidney (16). The specialized membrane of RBC consists of large amounts of poly 

unsaturated fatty acids (PUFA) which are highly susceptible to peroxidation. RBC promotes 

the release of NO and generation of superoxide anion. When these two species interact each 

other they form highly reactive peroxynitrite. Peroxynitrite further damages the lipids and 

proteins and results in membrane structural disorientation and RBC dysfunction (17- 19). 

These features of RBC make it be a suitable model to study oxidative hemolytic and 

neurodegenerative diseases. These disease models also provide the opportunities for 

researchers to understand the potential mechanisms how oxidative stress progresses in spite 

of the presence of strong endogenous antioxidant pool in RBCs. 

 

2. DIVERSE MODES OF OXIDATIVE STRESS IN RBC  

 

     RBCs are a suitable single cell model which is frequently used for studying ROS 

generation and hemolytic oxidative damage (20). Many naturally occurring substances, 

chemicals and medicines can cause RBC oxidative stress as discussed below (Figure 1): 

 

2.1. Medicines and chemicals.  

      

     Atorvastatin, a medicine conventionally used to treat hypercholesterolemia, causes 

blebbing in RBC membrane and eryptosis due to oxidative stress (21). Hydrogen peroxide 

(H2O2) induces excess oxidative stress in erythrocytes by disturbing their deformability and 

elasticity (22-24). Band 3 proteins, the chloride-bicarbonate exchanger of RBC, responsible 
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for maintaining the homeostatic condition of erythrocyte is dismantled by H2O2 (25). 

Increased ROS and lipid peroxidation are observed in RBC of zebrafish when they are 

exposed to bisphenol A, a potential endocrine disruptor (26). Bexarotene is a potent drug 

used to treat malignancy. When human RBCs are treated with this medicine the ROS 

production and phosphatidylserine translocation are significantly increased (27). Another anti 

malignant medicine, phenoxodiol, also induces RBC membrane asymmetry by translocating 

phosphatidylserine in outer leaflet, a biomarker of apoptosis (28). Tamoxifen, an 

antiestrogenic medicine, used to treat breast cancer can induce hemolytic anaemia by 

destructing the skeletal protein structure of RBC membrane, principally by releasing 

peripheral and cytosolic proteins from Band 3 proteins (29). Opioids decrease RBC 

deformability as a result of occlusion of calcium (Ca2+) pump, responsible for extrusion of 

intracellular Ca2+ and contributing in maintaining probity of RBC structure (30). 

 

2.2. Heavy metals.  

 

     Heavy metals are toxic environmental insults to the RBCs. Heavy metals cause RBC 

toxicity manifested by altered morphology and increased stress markers (31). Highly toxic 

and pervasive heavy metal, mercury (Hg), induces oxidative stress in RBCs with a significant 

rise in ROS level and a concomitant decrease in the level of anti-oxidant glutathione (32). Hg 

also leads to hemoglobin oxidation and extensive inhibition of the enzymes involved in 

glutathione cycle, jeopardizing the free radical quenching ability of antioxidant machineries 

in RBC (33). NO synthesis is decreased in Hg exposed RBC due to the suppression of NO 

synthase (NOS) activity (34, 35). Reduced activities of potent antioxidant enzymes including 

catalase and glutathione peroxidase (GPx) are found in RBCs of eurasian eagle owls 

inhabited in the industrial area with cadmium (Cd), lead (Pb) and Hg pollution (36). Pb is 

known to alter the compositions of RBC membrane and to hamper hemoglobin synthesis (37-

39). Activity of γ-aminolevulinate dehydratase, a major enzyme responsible for heme 

synthesis, was hindered in painters and battery workers exposed to lead and cadmium with 

the situation of redox imbalance (40). Hemoglobin and RBC content are significantly reduced 

in male wistar rats when cadmium chloride was given orally at a dose of 10mg/kg body 

weight (41). Similarly, oxidative stress occurs in male wistar rats when these animals 

received cadmium treatment (42). An increase in energy expense of RBC has been recorded 

in common carp exposed to Pb, Cd, copper (Cu) and zinc (Zn) (43). The adverse effects of 

waterborne metals on the oxidative biomarkers of RBC, especially on acetylcholine esterase, 

a crucial enzyme to keep RBC membrane properly functional, were observed in dice snakes 

from contaminated area of Serbia (44). RBCs are the major sites for lead’s accumulation 

(45) and heavy metal exposure significantly suppresses the activities of catalase and GPx 

(46-48). When human RBCs were incubated with different doses of Cu, chromium (Cr), Pb 

and Zn their MDA levels were significantly enhanced (49). Long term of Cr exposure 

reduces activities of superoxide dismutase (SOD) and catalase, making erythrocytes more 

susceptible to oxidative stress (50). Collectively, RBCs are vulnerable to heavy metal 

toxicity which inhibits activities of biosynthetic enzymes and increases lipid peroxidation of 

RBC membrane, thus menacing RBC structure-function relationship (51- 53).  

 

2.3. Cigarette smoking. 

 

     Abundance of active ingredients including aldehydes, heavy metals, nitrosamines, 

hydrogen cyanide, metallic ions, hydroxyl radicals and other oxidants in cigarette make 

smoking a harmful for human health, especially, it is toxic to RBC. Smoking causes 

membrane lipid peroxidation, desensitization of endogenous antioxidants and RBC 



 

Melatonin Research (Melatonin Res.)                              http://www.melatonin-research.net 

Melatonin Res. 2020, Vol 3 (1) 1-31; doi: 10.32794/mr11250045                                        4 

hemolysis (54- 56). Consumption of nicotine and cotinine, the two major constituents of 

cigarette, significantly reduces the level of sulfhydryl groups (-SH) in proteins residing in 

RBC membrane and these -SHs are essential for maintaining membrane stability by 

combating with ROS (57, 58). RBC suspension exposed to cigarette smoking leads to a large 

quantity of ROS formation (59). Increased systemic oxidative stress and altered RBC redox 

state are found in smokers (60). A strong correlation between smoking induced oxidative 

stress and the acute myocardial infarction has been identified (61). A significant increase in 

RBC count among smokers provides supportive information that smoking induces hypoxic 

state in human bodies (62). Consequently, the hemoglobin level in RBC is significantly 

increased both in male and female smokers (63, 64) compared to the non-smokers (65). RBC 

oxidative stress causes suicidal erythrocyte death i.e.; eryptosis which is highly correlated 

with the occurrence of chronic inflammatory diseases (66) and high level of superoxide 

anion in smokers (67). The RBC membrane enriched with polyunsaturated fatty acid is the 

target of oxidants and toxins of cigarette smoking and it is also the vulnerable place to 

generate large scale of ROS from smoking (54, 68, 69). RBC membrane injury leads to 

hemolysis and destruction of membrane asymmetry (58, 67). The smoking-induced 

consequential morphological changes in RBC were also visualized with the high resolution 

techniques (70, 71). Evidence showed that many chemicals generated by the smoking 

oxidatively attacked haemoglobin to form haemoglobin adduct which impeded normal 

oxygen carrying function of RBC (72).  

 

2.4. High fat diet (HFD).  

 

     HFD is another factor to induce RBC pathology. For example, New Zealand white rabbit 

fed with HFD caused RBC hemolysis with increased methemoglobin and reduced 

oxyhemoglobin ratio (73). In hyperlipidemic rats feeding with 30% HFD for 8 weeks, the 

depletions of total thiol and glutathione levels in their RBCs result in the increased 

sensitivity of these RBCs to oxidative stress (74). The fragmentation and osmotic fragility of 

RBC are increased in HFD treated rats and the osmotic fragility is the principal marker of 

RBC membrane fluidity (75). A remarkable reduction of p55 and band 4.2 skeletal proteins 

in RBC membrane which are responsible for maintaining integrity of RBC structure was 

found in HFD treated rats accompanied with a collateral increase in malondialdehyde 

(MDA) level (76, 75). In mice, HFD also increases ROS production and phosphatidylserine 

externalization in RBC membrane which triggers proinflammatory response and 

macrophage activation to induce death signal in RBCs (77). Alterations in shape and 

deformability index of RBC were observed in the cholesterol fed rabbits (both in vivo and in 

vitro) with significant increase in membrane area (76, 78, 79), particularly in the peripheral 

side (80), leading to spicule formation (81). The elevated intracellular ROS production 

suppressed GSH level and decreased NO synthesis and these make RBCs be lack of 

response to hypoxic condition (82). The oxidative biomarkers including lipid peroxidation 

and protein carbonyl content in RBC increased in chronic alcohol consumers (equivalent to 

HFD) with increase in membrane cholesterol level. In addition, the density of membrane 

proteins such as band 3, 4.2, p58, demantin, actin, glycophorin significantly increased in 

alcoholics which may be an endeavour of RBC to respond to stressed situation (83, 84). 

 

2.5. Xenobiotics. 

   

     Detoxification is a salient feature of RBC as they have the ability to remove toxins from 

the body (85). For this reason, it is important to examine the effects of several xenobiotics 

on morpho-functional status of RBC. Chlorfenvinphos, an organophosphate insecticide, 
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caused RBC hemolysis and methemoglobin formation by elevating the levels of TBARS and 

ROS (86). The general adverse effect of xenobiotics on RBC is to modify its morphologies 

which activate macrophages to eliminate the disformed RBC, resulting in deleterious 

anaemia (87). The underlying mechanism is related to oxidative stress induced by the 

xenobiotics. This was confirmed by the increased lipid peroxidation and decreased 

antioxidant enzyme activities in rat RBC exposed to a pesticide chlorpyrifos (88). The 

similar observations have been reported in different studies involved in chlorpyrifos and 

another contact-pesticide, endosulfan, on goat RBC (89). The elevated glutathione content 

and parallelly increased ROS production in RBCs treated with pyrethroid, a pesticide, 

reflects an early adaptive response of RBCs to oxidative stress (90). Due to the lipid 

peroxidation, the acetylcholine esterase activity of RBC membrane is also significantly 

reduced (90). The disturbed redox balance is the major cause of morpho-functional 

alterations in RBC afflicted by several organophosphate and carbamate pesticides (91- 95). 

The potassium leakage from RBC, related to the toxicity of organophosphates, is attributed 

to the increased membrane fragility of RBC (96). In addition, the impurities formed during 

pesticide synthesis also possess similar negative impacts on human RBC structure and 

function due to elevated ROS level (97). The strong correlation between usage of 

xenobiotics and RBC hemolysis has raised an alarming situation to consider minimizing the 

usage of harmful inorganic insecticides, fungicides and pesticides world widely (98- 101). 

 

2.6. Training and exercise. 

  

     The excessive physical exercise also causes RBC hemolysis. A 40% shorter life span was 

reported in case of runners (102). Soccer players possess more oxidative stress in their RBCs 

compared to the RBCs of sedentary controlled subjects and the antioxidant supplementation 

is suggested to these players (103). Escalations of TBARS and methemoglobin have been 

found in exhaustive runners. The anionic transport and carbonic anhydrase activities of 

RBCs significantly decreased in those exhaustive-exercise athletes (104). Even the minimal 

exercises in case of untrained subjects can also lead to their RBC oxidative stress and 

modulation of RBC antioxidant system (105). Growing evidence has shown the adverse 

effects of exhaustive-exercise on the structures and functions of RBC (106). The exhaustive 

exercise breaks the normal glutathione balance cycle in RBCs along with diminished GSH 

level, giving a strong indication of RBC oxidative stress (107). 

 

3. RBC DISORDERS AND OXIDATIVE STRESS 

 

     The associations of oxidative stress and RBC disorders are well documented.  Thalassemia 

is an inherited autosomal disorder with defects in synthesis of either α globin chain (α-

thalassemia) or β globin chain (β-thalassemia) (108, 109). This disorder is characterised by 

deficient erythropoiesis and short RBC life span due to the fact that diseased RBC membrane 

is less deformable and susceptible to lysis when passing through microcirculation (110- 112). 

All types of thalassemia exhibit clinical symptoms of anaemia, hepatosplenomegaly and RBC 

iron overload (109). The free iron is solely responsible for Fenton reaction which generates 

enormous amount of ROS to initiate membrane peroxidation and protein damage within 

RBCs (113, 114). Studies have uncovered the increased ROS generation and structural 

abnormalities in RBCs of thalassemia patients (110). Successful inhibition of iron overload-

induced RBC oxidative stress by antioxidant treatment in thalassaemic patients further 

confirms that the redox imbalance is the major etiology of thalassemia (115, 116). The iron 

overload induced RBC oxidative stress can also be treated by the iron chelators that prevent 

subsequent Fenton reaction. (117). High levels of deleterious hydroxyl radical and low 
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amounts of antioxidants including GSH have been reported in thalassaemic patients as well 

as in the mouse thalassaemic model (118-121). As much as 90% of reduction in GSH/GSSG 

ratio (reduced glutathione: oxidised glutathione), is observed in thalassaemic patients 

compared to control subjects (122). Compromised levels of GSH and vitamin E and reduced 

activities of antioxidant enzymes including SOD and catalase have been reported in 

erythrocytes from α-thalassaemic patients (123). A negative correlation between GSH and 

MDA, GPx, glutathione reductase (GR) is a consequence of iron overload and oxidative 

stress in thalassaemic patients (124). The haemoglobin oxidation and superoxide anion 

formation in RBCs are the other characteristics of thalassemic symptoms (125). The 

attachments of three skeletal proteins, spectrin, actin and band 4.1 to RBC membrane are 

crucial for functional RBC. The impeded attachment in severe thalassemia causes hemolysis 

and consequently drives away RBCs from circulation (126). Thus, increasing the activity of 

antioxidant enzyme SOD in β-thalassemic children is a good strategy to combat this disorder 

(127). In addition to the endogenously occurring free irons in thalassaemic patients, the free 

irons derived from blood transfusion and oral iron therapy also trigger ROS generation (128). 

In summary, patients of α- or β-thalassemia have low RBC hemoglobin content due to 

alterations in the globin coding gene mutation. The binding capacity of these mutated 

hemoglobins to free irons is dramatically limited and the overloaded free irons in RBC trigger 

oxidative stress and RBC hemolysis which manifested as hemolytic anaemia clinically. 

     In contrast to iron overload anaemia, iron deficiency also causes hemolytic anaemia, 

characterised by decreased rate of hemoglobin synthesis and declined RBC formation. A 

major cause behind such anaemia is the prematurely removed RBCs from circulation (129, 

130) due to the increased membrane hardness and decreased deformability of these RBCs 

(131-133). Iron deficiency prevailed within RBCs is associated with externalization of 

phosphatidylserine (PS) in outer leaflet of RBC membrane, a signature mark for RBC 

eryptosis (134, 135). This eryptosis is involved in the oxidative stress that triggers PS and 

calcium signalling in afflicted RBCs (135-137). The increased lipid peroxidation and 

decreased GPx activity further promotes the eryptosis (138- 143). Involvement of oxidative 

stress in iron deficiency anaemia is confirmed by use of antioxidant to correct this disorder 

(143, 144). The decreases in activities of potent antioxidant enzymes (SOD, catalase, GPx) 

significantly jeopardize the ability of RBCs to combat stressful situations (138, 141, 142, 

145). In an iron-deficiency anaemia mice model, the RBC oxidative stress was manifested by 

decrease in methemoglobin and enhancement in fluorescent heme degradation product (146). 

Thus, both iron overload and deficiency caused ROS generation and hemolytic anaemia with 

different mechanisms. For former, the overload of free iron promotes the Fenton reaction and 

generates ROS. For the later, in case of iron deficients, due to unavailability of heme 

molecule, oxygen fails to bind with hemoglobin creating a hypoxic situation and this trigger 

increased oxygen partial pressure leading to enhancement in superoxide anion generation 

followed by hemoglobin autoxidation (147, 148). Hence, not only genetic alterations, but also 

oxidative stress is a key to deleterious situations associated with blood disorders (Figure 1). 

 

4. RBC OXIDATIVE STRESS AND NEURODEGENERATIVE DISEASES 

 

     The neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s 

disease (PD), characterised by gradual loss of neurons, motor and cognitive functions, are 

associated with excessive ROS generation and oxidative stress (149, 150) in central nervous 

system (151, 152). Although the aggregation of misfolded proteins is the main etiology for 

these disorders, the abnormal RBCs also participate in its progression. For example, the 

altered RBC membrane proteins are found in AD patients (153). The band 3 protein in 

erythrocyte membrane undergoes breakdown at its transmembrane region in AD patients 
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(154). Exposure of RBC obtained from AD patients to oxidants triggers the binding of 

senescent antigen IgG, a relevant ageing marker of RBC membrane (155). Elevation of ion 

diffusion through the anion exchanger band 3 protein has been observed in persons with AD 

symptoms (156, 157), indicating functional anomalies of RBCs in AD patients. These 

morpho-functional alterations of RBC are always accompanied with neuronal cell death in 

AD patients (158), a positive correlation between RBC oxidative stress and progression of 

AD. Spin labelled RBC membrane from AD patient also exhibits the altered status of RBC in 

terms of its structure and function (159). When RBC membrane is exposed to different 

concentrations of Aβ1-42, the levels of TBARS increase in a concentration dependent 

manner (160). Aβ1-42 is responsible for forming senile plaques in progression of AD and it 

also causes RBC oxidative stress in response to amyloidosis (161). Other than brain, the 

presence of Aβ has been identified in RBC (162). Aβ interacts with RBC leading to its 

malfunction (163) due to Aβ mediated oxidative injury (164- 166). This oxidative injury 

enhances the occurrence of eryptosis (167), mainly triggered by caspase 3 mediated 

degradation of band 3 protein located in the RBC membrane (165). Malondialdehyde level is 

higher in RBCs of AD patients (168) and antioxidant treatment reduces this oxidative stress 

associated with the Aβ toxicity (169). RBC membrane of AD patients is highly fragile 

compared to that from the normal subjects (170). RBC from AD patients has the reduced 

SOD activity (171, 172) with a strong implication of oxidative stress occurred in RBCs of 

AD patients (173). 

     The elevated lipid peroxidation and reduced SOD activity are the characteristics of PD 

patient’s RBCs (174, 175). A signature mark of PD patients is the accumulation of transferrin 

inside mitochondria and this leads to release of free iron (in ferrous state) potentiating Fenton 

reaction for hydroxyl radical generation (176, 177) and this gives a reason to use iron chelator 

as a medication to PD (177, 178). The presence of RBCs with eryptotic shape, loss of 

membrane phospholipid asymmetry altered RBC granularity and membrane elasticity are 

reported in PD patients, confirming the oxidative stress in RBC from PD patients (179). 

 

5. DIABETES MELLITUS AND RBC OXIDATIVE STRESS – A CRUCIAL LINK 

 

     Oxidative stress plays a pivotal role in diabetic complications and RBC oxidative stress 

may attribute to the progression of diabetic conditions. Altered protein structure and redox 

system in the membrane of RBCs are found in type 2 diabetic patients (4, 180). Reductions in 

life span (181, 182), altered membrane phospholipid asymmetry (183), increased aggregation 

(184, 185) and multiple morpho-functional variations (186) are also the features of RBCs 

from the diabetic patients.  Reduced ATP synthesis (187) in RBCs of diabetic patients due to 

oxidative stress causes glucose accumulation which is responsible for phosphatidylserine 

exposure. In addition to the functional anomalies mentioned above, structural variations of 

RBCs from diabetics are also visualized under the high-resolution imaging microscopy (188). 

Moreover, in vivo studies have shown that hyperglycaemia induces the over expression of 

IL6 which then, inhibits erythropoietin production (189, 190). The erythropoietin promotes 

generation of RBC and its inhibition finally results in anaemia (191). The increased oxidative 

stress in diabetic RBC further confirmed by the observations of either reduced antioxidant 

GSH or the activity of antioxidant enzyme, GPx (192). 

 

6. GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PDH) - THE KEY STRESS 

RELIEVER IN RBCs 

 

     The metabolic enzyme, G6PDH, involved in hexose monophosphate (HMP) shunt 

pathway, participates in combating oxidative stress. This HMP shunt is the only source of 
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NADPH formation in RBCs since they lack citric acid cycle (193). RBCs require great 

amounts of GSH for their normal function under oxidative stress. GSH is synthesized by GR 

which requires NADPH as a cofactor. Hence, NADPH is a necessary factor to keep a 

balanced redox state within RBCs. RBC oxidative stress has been found in the case of 

G6PDH deficiency related to the X linked recessive disorder in which the NADPH is 

depleted and GSH regeneration is impeded (194, 195). Role of G6PDH in ameliorating the 

oxidative stress induced cell necrosis has been reported (196) and G6PDH knockout mice 

promotes oxidative stress (197). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Different modes of oxidative stress induced harmful effects in RBC. 

 

7. ANTIOXIDANTS- A PROTECTIVE MEASURE AGAINST OXIDATIVE STRESS 

OF RBCs 

 

     A wide range of molecules possess antioxidant capacity to protect cells as well as tissues 

from deleterious actions of ROS. These molecules are referred as antioxidants which act 

enzymatically or non-enzymatically to detoxify ROS. RBC is the most vulnerable cell 

affected by ROS and thus, it is shielded by diverse of endogenous and exogenous antioxidant 

machineries. For example, the exogenous antioxidants β-carotene and resveratrol can directly 

neutralize ROS in human erythrocytes (198) and they also stimulate the activities of the 

endogenous antioxidant enzymes, SOD and catalase, in RBCs (199, 200). The permeability 

of β-carotene through cell membrane (201) benefits its chelating to metals of diverse valency 

to reduce the cellular oxidative stress (202). The hepatic regenerator silymarin can reduce 

RBC oxidative stress induced by benzopyrene and H2O2 thus, preserves the functional status 

of RBCs (203). Natural antioxidants such as green tea leaf extract and ascorbic acid have the 

capacity to inhibit H2O2 and free iron induced membrane peroxidation which subsequently 

prevents hemolytic anaemia as well as the disruption of normal cellular function (204). 

Ascorbic acid administration also increases the tolerance of RBC of smokers to the oxidative 

stress (205). The phospholipid asymmetry, a signature mark of RBC apoptosis and the 

decreased RBC deformability are reversed by Terminalia arjuna bark extract via its 

antioxidant effect (206). The flavonoids including quercetin, rutin effectively ameliorate RBC 

hemolysis accompanied with a significant rise in sulfhydryl group containing molecules 
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(207). The oxidative damage during RBC storage is prevented by the commercial antioxidant 

mixtures (208) and the phenylhydrazine induced hemolytic anaemia and impaired 

erythropoiesis can be protected by the antioxidant vitamin C (209). The antioxidant cocktail 

is successfully used to treat β-thalassaemic patients in order to control the stress mediated 

hemoglobin destruction (210). Increased oxidative stress in diabetes due to overactive Mg2+ 

ATPase of RBC membrane causes elevation in glycolytic pathway and this reaction is 

inhibited by antioxidative effect of aqueous preparation of Kalanchoe pinnata leaves (211). 

Another antioxidant, N-acetylcysteine, can preserve the RBC cytoskeletal architecture and 

functional status in patients with non-insulin dependent diabetes mellitus (212). Thus, 

antioxidants play a critical role to protect RBCs from oxidative stress.  

 

8. MELATONIN- A PHYLOGENETICLY ANCIENT ANTIOXIDANT 

 

     Melatonin, first isolated from bovine pineal gland as a neurohormone (213), has been later 

characterised as a potent free radical scavenger and antioxidant (214). This pineal indole has 

been reported to be phylogenetically ancient in evolution with its presence from bacteria 

(215) to human; therefore, it is classified as an oldest and versatile antioxidant (216). The 

ability of melatonin to forestall the oxidative stress and resultant molecular and/or cellular 

damage has been well documented (217). The potency of melatonin in scavenging hydroxyl 

(214, 218- 221), alkoxyl (222, 223) and peroxyl (224, 225) radicals is higher than those of 

other antioxidants. In addition, melatonin suppresses the generations of nitric oxide (226, 

227) and singlet oxygen (228, 229) in neuronal and other tissues.  

     Mitochondria, the major sites of ROS generation, contain high level of melatonin 

compared to other compartments of cells (230- 233) and this is an on-site advantage of this 

molecule as an antioxidant superior to others. Actually, melatonin is synthesized, metabolized 

and functional in mitochondria and it is referred as the mitochondria targeted antioxidant 

(234). This indolamine exhibits proficiency to cross cell membrane and blood brain barrier 

(226, 235-237) to execute its protective effect. The metabolites of melatonin, produced from 

its reaction with free radicals, also possess potent antioxidant activity (238-242) along with a 

property to regenerate melatonin per se (243, 244). In addition, melatonin also has the 

capacity for restoration of the endogenous antioxidative system to broad its antioxidant 

spectrum. Even melatonin is reported to stimulate the activities of antioxidant enzymes (245), 

a breakthrough comes from the discoveries that melatonin upregulates mRNA expression of 

CuZnSOD and MnSOD which are responsible for dismutation of superoxide anion inside and 

outside the mitochondria (246). The upregulation of gene expression for GPx is also observed 

with melatonin treatment in neuroblastoma cells exposed to the Alzheimer amyloid peptide 

(247) giving an explicit view of its role in maintenance of cellular redox balance.  

      Its low urinary secretion (248) and high level of accumulation within cells by simple 

diffusion (249) and transportation are the major reasons to attribute high efficiency of 

melatonin as an antioxidant despite of its short half-life. Its none or low toxicity at vast range 

of doses for animals (250, 251) makes this molecule a widely acceptable antioxidant to 

detoxify the adverse effects of ROS. Moreover, the transition metal chelating capability of 

melatonin (252) increases its utilities as a protector of organisms under adverse stress 

situations.  

9. MELATONIN IN SEVERAL LIFE-THREATENING DISORDERS   

 

     An excessive ROS generated in cells under stressful condition can be amended by 

melatonin exploiting the mechanisms described above. Notably, melatonin in circulation is 

responsible for its receptor mediated action. These receptors are present either in cell 



 

Melatonin Research (Melatonin Res.)                              http://www.melatonin-research.net 

Melatonin Res. 2020, Vol 3 (1) 1-31; doi: 10.32794/mr11250045                                        10 

membranes or in the intracellular organelles (253, 254).  The direct free radical scavenging 

and indirect increase in other endogenous antioxidant level by acting on the receptors (255, 

256) are the major antioxidant mechanisms of melatonin. Melatonin synthetic genes which 

are expressed in several important tissues and organs facilitate its on-site protective effects. 

Hence, this tiny indole can be shining armour against destructive free radicals.  

     Melatonin is a potent protector of cardiac damage induced by oxidative stress. The clinical 

trials have shown the protective effects of melatonin on cardiac arrhythmia (257), myocardial 

ischemia/reperfusion injury (258, 259- 261), its secondarily occurred liver and gastric tissue 

lesions (262, 263) and cardiac apoptosis related to the metabolic disturbance (264). The 

oxidative cardiac damage induced by high fat diet in rat is also protected by melatonin (265). 

The decrease in circulating level of melatonin shows high correlation with the occurrence of 

diabetes (266) and, thus, melatonin is used to enhance the bioavailability and functionality of 

metformin to treat type II diabetes mellitus (267). Based on the evidence, melatonin is 

suggested to be a promising molecule against stress induced diabetic cardiomyopathy (268). 

Furthermore, melatonin is also a potential remedy to inhibit non-steroidal anti-inflammatory 

drug (NSAID) induced gastric injury (269, 270) and the low endogenous melatonin synthesis 

has been associated with gastro-duodenal tissues and subsequent gastric injury (271, 272). 

Recently, heavy metal induced splenic injury was also reported to be mitigated by melatonin 

(273). Several studies give an optimistic view to prescribe melatonin as a curative medicine 

against neurodegenerative disorders and β-amyloid accumulation induced lipid peroxidation 

(274-276), mitochondrial dysfunction along with DNA lesion (277) in AD patients. Hence, 

melatonin is well accepted as a remedy to delay oxidative stress in ageing process which is 

distinctly elucidated in a study of life-long melatonin deficient rats (278). 

 

10. MELATONIN PROTECTION AGAINST RBC INJURY INDUCED BY 

OXIDATIVE STRESS 

 

     RBCs are able to extract melatonin from circulation and its accumulation promotes the 

activity of GPx (279).  RBCs also synthesize melatonin de novo (280) and this probably the 

only cell synthesizes melatonin without mitochondria. This ability further enhances the 

melatonin concentration in RBCs. Melatonin is considered as a redeemer to preserve 

structurally and functionally compromised RBCs from oxidative stress. For example, the 

cumene hydroperoxide treatment caused RBC hemolysis with increased osmotic fragility, 

membrane haemin and other degradation products formation while these alterations are 

reversed by melatonin application (281). In addition, the cumene hydroperoxide causes 

perferryl haemoglobin formation. This perferryl haemoglobin contains highly oxidant iron 

oxoferryl heme group which leads to methemoglobin formation and this reaction is blocked 

by melatonin treatment in the afflicted RBCs (282). The malondialdehyde, released into 

blood stream as an indicator of oxidative stress, acts as a stressor to RBC triggering its lysis 

and subsequently its destruction and these can also be cushioned with melatonin intervention 

(283). The mechanisms involved in protective measures are not only antioxidant activity but 

also the chelating property of melatonin. Melatonin chelates free iron, formed during RBC 

apoptosis and cause forceful destruction under stressed conditions, to inhibit Fenton reaction 

and subsequent ROS generation. Additionally, a favourable binding pattern of melatonin with 

the highly oxidant molecule phenylhydrazine has been reported in the in vitro study. By 

binding to phenylhydrazine, melatonin inhibits the ability of this molecule to generate ROS in 

RBC, a novel mechanism of melatonin’s preventive role for RBC against excess ROS 

formation (284). Clinically, melatonin has been applied to athletes in maintaining their 

antioxidant level during preparatory period of competitions (285) with increased activities of 

catalase and GPx in their RBCs (286). Melatonin is also applied in RBC storage to eliminate 
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the detrimental effects of oxidative damages (287). The protective effect of melatonin on 

RBC oxidative stress has been observed in senescence accelerated mice (288). Both fluidity 

and mechanical stability of RBC are the central components to maintain its functionality. Cell 

membrane is a major compartment of subcellular melatonin distribution and its level is even 

greater than that in nucleus and cytosol (289). The small molecule size and the amphipathic 

characteristics make melatonin able to penetrate through every subcellular compartment to 

produce its antioxidative activity (290). It is suggested that its presence in the hydrophobic 

core of membrane can successfully scavenge nitroxide which is even present within groove 

of the bilayer (291).  

     On the other hand, studies indicate the possibility that melatonin preferentially localizes in 

heads of phospholipids where there is surplus of ROS within membrane (292). Melatonin 

enhances lipid dynamics by increasing the free motion of lipid molecules in cell membrane 

(293).  

     The effects of melatonin on glucose metabolism in RBC have been a focus and melatonin 

limits glucose uptake in tumour cells. The expressions of GLUT1 and GLUT4 in RBCs and 

the competition between melatonin and glucose to bind to these glucose transporters indicate 

that melatonin can be transported into inside of the cells via these glucose transporters (249). 

Melatonin protects hemolytic anaemia induced by oxidative stress and thus, enhances the 

levels of hemoglobin and RBC life span within circulation (209). The hemolytic anaemia as a 

result of G6PDH deficiency can be palliated by melatonin application (294). The hydrogen 

peroxide treatment disturbs the anion exchanger Band 3 protein, a crucial for RBC function; 

however, melatonin application reverses this in human RBC in an in vitro study (295). The 

probable protective mechanisms of melatonin on RBC oxidative injuries are illustrated in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Different pathways underlying the protective actions of melatonin in 

combating oxidative stress in RBC. 

 

11. CONCLUSION AND FUTURE PERSPECTIVE 

 

     An excessive ROS generation is inevitable for organisms under the oxidative environment 

of earth. Since RBC is the major oxygen transporter of mammals, this makes RBC more 
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vulnerable to oxidative stress. This review focuses on the influence of several environmental 

factors and congenital disorders on the morpho-functional integrity of RBC. It appears that 

endogenous antioxidants play critical role to preserve the functions of RBC under the 

oxidative stress. Among these antioxidants, melatonin is a choice by its unique feathers. 

RBCs can extract melatonin from circulation and they can also synthesize melatonin, 

therefore, high level of melatonin can be accumulated inside of RBCs to exert their on-site 

protective action. Melatonin directly scavenges the ROS, indirectly stimulates the activities 

of antioxidant enzymes and also chelates the free irons. All of these contribute to melatonin’s 

potent protective effects on RBC oxidative damage. Hence, this review suggests melatonin as 

a restorative agent to overcome RBC injury caused by a variety of insults. It is our suggestion 

to use melatonin as a therapeutic agent to prevent RBC from hemolytic disorders. 
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