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ABSTRACT 

 

     The revelation of adult brain exhibiting neurogenesis has established that the brain 

possesses great plasticity and that neurons could be spawned in the neurogenic zones where 

hippocampal adult neurogenesis attributes to learning and memory processes. With strong 

implications in brain functional homeostasis, aging and cognition, various aspects of adult 

neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating 

the therapeutic approaches regarding the development of neurodegenerative processes in 

Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with 

compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine 

augments neurogenesis and has been linked to AD development as its levels are 

compromised with disease progression. Here, in this review, we discuss and appraise 

the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions 

which would unravel the molecular basis in such conditions and its role in endogenous brain 

repair. Also, its components as key regulators of neural stem and progenitor cell proliferation 

and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic 

implications of this indoleamine in line of prevention and treatment of AD.  
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__________________________________________________________________________ 

 

1. INTRODUCTION 

     Neurodegenerative diseases are characterized by functional disintegration of newly 

generated neurons which are associated with cognitive and memory dysfunctions. The theory 

of Alzheimer’s disease (AD) pathogenesis as an event of deregulated cellular differentiation 

was first proposed by Santiago Ramon  and Cajal, S. and has been discussed in terms of 

degeneration and regeneration of the nervous system (1). The dramatic decrease in 

neurogenesis during adulthood and its further decline with advance aging (2) suggest that 

reduced proliferation of neural progenitor cells might be one of the important mechanisms 

associated with the cognitive decline observed in AD subjects and the fact that cell cycle 

kinetics and the transition from proliferation to cell cycle exit and differentiation governs 
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major aspects of neurogenesis (3) with recent evidence of drastic decrement in adult 

hippocampal neurogenesis in AD patients (4), strongly recommends this area to be a key 

target for developing anti-AD therapeutics (5).  

     Melatonin, the multifunctional indolamine acts as an endogenous factor that modulates 

and promotes plasticity in the brain and has been identified in the regulation of hippocampal 

neuronal development during adulthood. Along with promoting endogenous neurogenesis (6, 

7), melatonin also regulates hippocampal plasticity (8, 9) both at structural and functional 

levels (10). Studies have affirmed that exogenous melatonin acts during different events of 

the neurogenic process which involves the activation of its membrane receptors distributed 

abundantly in the hippocampal neurogenic niches (11). Additionally, cumulative evidence 

has pointed out that melatonin receptors not only play important physiological roles in sleep, 

anxiety, pain and circadian rhythm, but might also be involved in the pathogenesis of several 

neurodegenerative diseases including AD (12). The significance of melatonin in brain can be 

marked by a study which demonstrated that how the absence of maternal 

pineal melatonin might determine abnormal brain programming in the offspring with 

implications for brain function and behavior (13). Nonetheless, melatonin exerts 

neuroprotective effects in the central nervous system (CNS) and its age-related decline itself 

explains its regulatory effects on both neurogenesis and neurodegeneration (14). Also, 

melatonin has been acclaimed in enhancing the efficacy of peripheral nerve regeneration in 

nerve defect of Wistar rats (15) which manifests its diverse therapeutic paradigm. 

     Concerning the neurodegenerative pathology, melatonin has been recognized to 

alleviating pathogenic mechanisms in AD (16) and its regulatory actions in controlling 

neurogenesis (17-19) with modulation of crucial signaling pathways (20) makes this 

remarkable indoleamine as one of the most efficient candidates in regulating the development 

and progression of many neurodegenerative disorders. Moreover, AD neuropathology in 

propinquity with pineal gland dysfunction and altered melatonin secretion has emerged to 

somehow discern the complexity of AD pathogenesis suggestive of impaired neurogenesis 

due to reduction in melatonin secretion (21). Therefore, owing to the multifactorial nature of 

AD which involves complex heterogeneous pathophysiological pathways, a broad-spectrum 

therapeutic paradigm should be considered. Melatonin stimulates early and late stages of 

neurodevelopment in the adult brain and significantly enhances memory and cognitive 

functions in aging, mild cognitive impairment (MCI) and AD. The conceivable factors 

mediating melatonin-induced adult neurogenesis are comprehensive (Figure 1). Therefore, 

melatonin pharmacotherapy strategy is pragmatic in combating the multispectral pathology of 

AD (22). 

 

2. MELATONIN IN REGULATION OF THE PHYSIOLOGICAL HOMEOSTASIS 

OF NEUROGENIC NICHES 

 

     The insight that neurogenesis occurs in human brains throughout life led the 

understanding of learning and memory in a different direction (23, 24); contrary to the theory 

that neurogenesis was limited to embryonic development. This supervened as a complete 

scientific turn around as cognitive health of an organism is maintained by the capacity of 

hippocampal precursors to proliferate and differentiate. 

 

2.1. Melatonin and neural stem cells. 

 

     Neural stem cells (NSCs) are immature progenitor cells in the CNS that are capable of 

self-replication and multipotent differentiation into neurons and glial cells. Adult mammalian 

neurogenesis occurs throughout life in the sub granular zone (SGZ) of dentate gyrus in the 
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hippocampus and in the subventricular zone (SVZ) of the lateral ventricle (25-28). The 

newborn cells are incorporated into the extant circuitry of neurons which have been 

associated with the accretion of memory processes and cognitive functions (29) with 

phenomenal plasticity (30) thus boosting the total brain power. Therefore, the level of 

neurogenesis in the adult human hippocampus significantly contributes to the brain function 

(31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Potential factors mediating melatonin-induced adult neurogenesis. 

     Melatonin stimulates adult neurogenesis by upregulating neurotrophic factors and 

transcription factor network. By regulating βAPP metabolism, metabolic homeostasis, 

stimulating anti-apoptotic and down regulating pro-apoptotic genes, melatonin boosts 

neurogenesis thus enhancing overall memory and cognitive functions. Abbreviations: βAPP, 

Beta-amyloid precursor protein. 

 

     Melatonin has been extensively investigated in regulating neurogenesis via multiple 

pathways (Figure 2). This indoleamine regulates the viability and guides directional 

differentiation of NSCs as evidenced in rat midbrain NSCs (32). It remarkably maintains and 

augments neurogenesis and has also been known to enhance the survival of new neurons, 

boost growth and maturation of dendrites and increase volume of the granular cell layer in the 

hippocampus of adult mice. Also, the regulatory action of melatonin in generation of new 

neurons in the dentate gyrus is evidenced by the enhancement in the volume of mossy fiber 

projections (9). Cultured C17.2 cells originally cloned from mouse cerebellar neural stem 

cells constitutively express several neurotrophic factors including nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor 

(GDNF), which play pivotal roles in neuronal development and differentiation (33). 

Physiological concentrations of melatonin increased neurite-like extensions and induced 

mRNA expression of the neural stem cell marker, nestin, the early neuronal marker beta-III-

tubulin and the orphan nuclear receptor nurr1 in C17.2 cells (34). In addition, melatonin plays 

an important role in determining cell fate during neural commitment, thus promoting the 

differentiation of P19 mouse embryonic carcinoma cell line (P19) cells octamer-binding 

transcription factor 4 (Oct4+) SRY (sex determining region Y)-box 2, SOX2+) into neural 

stem cells via activation of the melatonin receptor subtype 1 (35). Interestingly, P19 cells 
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originate from an embryo-derived teratocarcinoma, can differentiate into the three germ 

layers and is broadly used for examining the molecular mechanism of neurogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic illustration of melatonin mechanisms in regulating cellular 

proliferation and neuronal survival. 

     Melatonin regulates cellular proliferation and neuronal survival by both receptor 

dependent and independent mechanisms. It enhances the levels of β-catenin thereby 

regulating self-renewal, synaptic formation and plasticity, stimulates SOX2 levels which 

cross talks with cell cycle regulatory proteins and improves proliferation and by increasing 

SIRT1 blocks senescence. Melatonin regulates proliferation and differentiation of stem cells 

by enhancing stem cell markers. By instigating MEK1/ERK signaling pathway, melatonin 1) 

activates CaMKII and phosphorylates CREB thereby eliciting dendritogenesis 2) controls c-

Myc which regulates cell cycle events and apoptosis (green arrows) 3) regulates 

mitochondrial function and blocks apoptosis, altogether promoting neuronal survival. 

Melatonin via PI3K/Akt signaling pathway; 1) stimulates Nrf2 and down regulates FOXO 

and procaspases thereby promoting neuronal survival 2) represses mTOR signaling pathway 

which in turn blocks tau hyperphosphorylation and regulates B-MYB which is involved in 

proliferation and senescence related phenomenon. Overall, it can be speculated that 

melatonin by regulating the above-mentioned mechanisms could possibly prevent 

neurodegenerative pathologies like aging and AD. SOX2, SRY (Sex determining region Y)-

box 2; SIRT 1, silent mating type information regulation 2 homolog) 1; MEK1/ERK, 

Mitogen-activated protein kinase kinase 1 /extracellular signal-regulated kinases; CAMKII, 

Calcium/calmodulin-dependent kinase type II; CREB, cAMP-response element binding 

protein; c-Myc, master regulator of cell cycle entry and proliferative metabolism; PI3K/Akt, 

phosphatidylinositol-3-kinase/protein kinase B; Nrf2, nuclear factor erythroid 2-related 

factor 2); FOXO, Members of the class O of forkhead box transcription factors; mTOR, 

mammalian target of rapamycin; B-MYB, Myb-related protein B. 
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     Melatonin stimulated NSC proliferation; increased the viability of cells, DNA synthesis 

(36) and significantly increased the number of neurospheres along with upregulation of 

multipotent stem cell markers (19). This indoleamine increased neural stem/progenitor cell 

proliferation in the dentate gyrus of rat pups (37) and increased the survival of neuronal 

progenitor cells in the dentate gyrus of adult mice (38, 39). Melatonin also stimulated the 

neural stem cells in adult mouse SVZ via its receptor activation by promoting III-Tubulin 

expression without affecting the levels of glial cell markers (17) and maturation of dendrites 

in new neurons formed in the dentate gyrus of mice (40).  

     The multiple actions of melatonin are modulated by many factors including Mitogen-

activated protein kinase (MAPK)/Extracellular signal-regulated kinase (ERK) signaling 

pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes 

(41). It has been reported that melatonin enhances NSC differentiation by increasing 

mitochondrial function (42). Growth factors are the main components for neurogenic 

induction in basic neural stem cell culture. A study by (18) compared the synergistic effects 

of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) along with 

melatonin using neurosphere proliferation assay suggesting that the observed effects resulted 

due to activation of ERK/MAPK pathway. Another study in PC12 cell cultures also 

demonstrated that sub micromolar concentrations of melatonin exert a positive effect on 

neural differentiation involving the MEK/ERK1/2 signaling pathway (43). Importantly, 

melatonin membrane receptors are involved in the transition from NSCs and proliferative 

cells to the developmental stages as observed in the hippocampal neurogenic process of adult 

female mice (11) suggesting the pivotal involvement of melatonin in such mechanisms. 

 

2.2. Melatonin acts via different transcription factors. 

     The specific transcription factors (Oct4, SOX2, c-Myc, and Krueppel-like factor 4 (Klf4)) 

dedifferentiate somatic cell lineages into a pluripotent state (44, 45). Melatonin induces 

mouse fibroblasts into induced pluripotent stem cells (iPSCs) possessing the same 

characteristics typical of embryonic stem cells (ESCs), including expression of the 

pluripotency markers Oct4, SOX2, and Nanog.  Melatonin also promotes the expression of 

SOX2 and activates the phosphatidylinositol-3-kinase (PI3K)/Akt/ Nuclear factor erythroid 

2–related factor 2 (Nrf2) signaling which authenticates its importance in survival and 

proliferation of NSCs (46). In addition, treatment with melatonin during the early stage of 

reprogramming downregulated the expression of the apoptosis-related genes p53 and p21 

compared with the untreated controls (47). Melatonin administration also modulated primary 

cultured bovine NSCs isolated from the retinal neural layer by down regulating both p53 and 

p21 and increased reprogramming efficiency of N-iPS cell generation from primary cultured 

bovine NSCs via activation of ERK1/2 pathway (48). Melatonin not only enhanced the 

reprogramming efficiency but also significantly upregulated gene and protein expression of 

Nestin and Microtubule associated protein 2 (MAP2) in a receptor dependent manner (49) 

thus enhancing the proliferation and differentiation of iPSCs via activating ERK1/2 and 

(PI3K)/Akt signaling pathway.  

     Endogenous stem/progenitor cells have been investigated for enhancing cognition in the 

diseased brain (50). Neurons produced within canonical stem cell niches play a significant 

role in cognitive tasks (learning/memory) operated by specific neural systems (51, 52).  Due 

to its remarkable protective potential and positive regulation of anti-aging mechanisms (53) 

and neurogenesis (14), melatonin has numerous applications in physiology and medicine 

pertaining to neurogenesis. Moreover, its involvement in regulation of important signaling 

pathways constitutes its role as a neurogenesis promoting agent (20). Nonetheless, a technical 

research patent on dendritogenesis and neuronal maturation has been drafted on the use of 
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the melatonin molecule in stimulating neuronal maturation and dendritogenesis in adult 

mammals (54). 

 

3. MELATONIN IN REGULATION OF NEUROGENESIS IN DIFFERENT 

PATHOLOGICAL CONDITIONS 

 

     Neurodegenerative diseases are associated with an exponential decrease in 

brain neurogenesis. The immature precursors of the CNS have self-renewal and 

multipotential differentiation abilities and their modulation with controlled pharmacological 

stimulation of these endogenous NSCs niches can be a promising therapeutic approach for 

many neurodegenerative disorders and other pathologies counteracting the neuronal loss. 

Melatonin has been accredited as a promising therapeutic approach for stimulating 

neurogenesis (55) by influencing proliferation and differentiation of NSCs in different 

physiological and pathological conditions (56).  

 

3.1. Aging. 

 

     Maintaining healthy brain function in old age is an extremely critical aspect as both 

natural aging and age-related diseases are essentially comprised of pathological changes. The 

age-related decline in neurogenesis has been attributed to a decreased pool of NPCs because 

aging cells divide less in a given period of time, and the ones that do are more likely to re-

enter the cell cycle within a day, both in vitro and in vivo (57). With advancing age there is an 

overall decrease in proliferation, growth factors, neuronal output and plasticity required for 

brain repair. NSCs undergo age-associated remodeling and dysfunction (58); therefore, 

therapeutic interventions targeting these niches could revitalize neurogenesis in the aged 

brain (59) . 

     Melatonin has been found to increase cell proliferation and survival in the hippocampus of 

aging mice (38, 39, 60). Its administration enhanced neurogenesis in old rats without 

modification of the total number of neurons and was able to reduce inflammation and 

apoptosis in the hippocampus (61, 62).  As impaired neurogenesis and neurodegeneration 

promote the aging process in the nervous system, the recognition of melatonin as an anti-

aging agent (53) with neurogenesis enhancing properties could have important therapeutic 

implications in aging (14) and neurodegenerative diseases (36). 

3.2. Circadian dysrhythmia and sleep deprivation.  

     Circadian dysrhythmia has adverse impacts on body and mind. The circadian rhythm 

disorder "jet lag" disturbs hippocampal neurogenesis and spatial cognition, which represents 

morphological and functional adult brain plasticity. Moreover, altered circadian rhythms 

coincide with reduced nocturnal melatonin response in subjects with cognitive impairment 

(63). Melatonin promotes neurogenesis in circadian disruption (64), restores hippocampal 

neural precursor cell proliferation and prevents cognitive deficits induced by jet lag 

simulation in adult mice (65).  

     Sleep deprivation is associated with changes in hippocampal neurogenesis and cognitive 

processes causing a significant reduction in the number of new neurons in the SGZ, which 

may impair learning and memory performance (66). The prophylactic administration of 

melatonin increases the number of neural precursor cells in the adult SGZ. The possible 

mechanisms implicated in this induction involve circadian rhythm, melatonin receptors, and 

growth factors (67). Interestingly, melatonin promotes an increase in the tissue levels of B-

cell lymphoma 2 (Bcl-2) in sleep-deprived animals. (68), using transgenic animals showed 

that Bcl-2 promotes neuronal maturation and hippocampal neurogenesis in the adult brain 
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which gives a clear indicative of one of melatonin’s mechanism of action in enhancing 

neurogenesis. To add on, a recent study observed that melatonin administration enhanced 

SOX2+/5-bromo-2'-deoxyuridine (BrdU)+ cells in the SGZ of the sleep-deprived group (69). 

This study also explained the underlying mechanism according to which melatonin 

possibly modifies the expression of epigenetic mediators which in turn further regulate the 

proliferation of neural progenitor cells in the adult dentate gyrus under long-term sleep-

deprived conditions.  

 

3.3. Metabolic disorders. 

 

     Accumulating lines of evidence have marked that metabolic disorders like diabetes affect 

adult neurogenesis (70)  where insulin/insulin like growth factor (IGF) signaling plays a 

pivotal role in modulating in NSC self-renewal, neurogenesis and cognition as evidenced in 

the CNS of mammalian models (71). Such involvement of disruptions in insulin/insulin 

receptor signaling, brain glucose uptake and tolerance in AD bridges the adult neurogenesis 

with energy metabolism and AD (72). Interestingly, it has also been evidenced in rodent and 

zebrafish models that diabetes impairs brain cell proliferation and differentiation thus 

affecting the overall brain cell survival (73). Type 2 is the most common form of diabetes 

reflected by peripheral blood hyperglycemia and one of the most prevalent risk factors for 

AD (74). Noteworthy, even the number and function of brain insulin receptors were found to 

be decreased clinically and in animal models of aging and AD (75). 

     In this frame of reference, melatonin prevented hyperglycemia induced detriments in  

brain of rat (76) and its receptors (Melatonin receptors 1 and 2) are associated pivotally in 

regulating glucose metabolism (77, 78). Recently, it has been established that melatonin 

prevents high glucose-induced apoptosis involving crucial signaling pathways like NF-κB, 

mTOR and Wnt in Schwann cells (79). Recently, it has been advocated that melatonin by 

restoring the brain insulin signaling substantially exerts neuroprotective effects on cognition 

in aged rats fed with high fat diet (80), herein, melatonin also prevented the increase in tau 

phosphorylation and amyloid beta (Aβ) accumulation in the hippocampus of rat brains.  

     Many previous studies have reported an inhibitory effect of melatonin on insulin release 

and contrary to this inference some studies have also demonstrated stimulatory effects. 

Therefore, based on the above congregated information there are some especially important 

aspects which needs to be mentioned and considered for elaborative investigations. Cohort 

studies have provided exceptional insights into such mechanisms where melatonin and its 

receptor (melatonin receptor 1B) play an important role in type 2 diabetes mellitus 

pathogenesis via directly acting on the β-cells (81) analyzing that the nocturnal melatonin 

secretion is independently and inversely associated with the insulin resistance (82). However, 

the melatonin induced decrement in glucose tolerance involved differential mechanisms 

during daytime and evening by either decreasing insulin release or by decreasing insulin 

sensitivity (83).  Also, a human meta-analysis revealed that rs1387153, rs4753426, and 

rs10830963 variants of melatonin receptor 1B might serve as genetic biomarkers of 

gestational diabetes mellitus (84). As such both improved and impaired glucose tolerance has 

been reported after melatonin therapy. These discrepancies might have been alleged due to 

the different experimental models and species. One important reason is that melatonin is 

inversely correlated to activity/food intake in the human, as compared to species like 

nocturnal rodents. Furthermore, standards like the genetic background and time of the day 

play an important role in explaining the outcomes in human studies (85). 

     Although several studies are undergoing in order to investigate the underlying 

mechanisms, (86), demonstrated of late that melatonin augments proliferation and regulates 

differentiation of NSCs via autophagy in hyperglycemia. Moreover, an interesting study 
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determined that co-treatment of bone marrow mesenchymal stem cells and melatonin 

improved the structural and functional efficiency of β-cell in streptozotocin diabetic male 

albino rats where melatonin by its own nature increased the vitality of stem cells (87).  In a 

similar streptozotocin rat model, (88) , showed the therapeutic role of melatonin in protecting 

against diabetic central neuropathy, oxidative stress and neurodegeneration. In addition, this 

indoleamine enhanced the proliferation of NSCs derived from the brains of embryos from 

diabetic pregnant mice (89) which suggests that melatonin supplementation in diabetic 

pregnancy might prevent neural malformations in the offspring and when treated with Wnt-4 

and retinoic acid, melatonin changed their morphology and enhanced expression of neural 

and glial cell markers (90).  

     The beneficial role of melatonin has also been demonstrated in mouse model of D-

galactose-induced aging where it significantly restored the D-galactose-induced reduction of 

proliferating cells (Ki67-positive cells) and differentiating neuroblasts (doublecortin-positive 

neuroblasts) in the dentate gyrus (91) and attenuated the reduction of neurogenesis, 

synaptogenesis and the induction of astrogliosis induced by high-fat diet and streptozotocin in 

rat models (92). 

 

3.4. Neurotoxic insults. 

 

     During embryonic stem cell self-renewal, growth factor deprivation and stress can lead to 

apoptosis and cell death (93). Dexamethasone is a synthetic glucocorticoid and exerts a 

neurotoxic action on rodent hippocampus. A study by (94) indicated a protective effect of 

melatonin on glucocorticoid neurotoxicity in the rat hippocampus. This indoleamine also 

protected hippocampal neurons from damage and reversed neurogenesis after chronic 

dexamethasone by activating BDNF and ERK1/2 cascades which indicates that melatonin 

possesses anti-stress and neurogenic actions (95). Apparently, melatonin regulates the cell 

viability, proliferation, and differentiation of NSCs from different brain regions (32, 36) and 

fosters neuroprotection against hypoxia (96), inflammation (46, 97) along with increasing the 

percentage of myelin basic protein (MBP)-positive cells in NSCs derived from mouse 

embryonic cortex (98).  

     Environmental stressors including irradiation have been shown to inhibit neurogenesis and 

are associated with the onset of cognitive impairments. Melatonin protects against radiation-

induced impairment of neurogenesis and cognitive functions (99). Also, melatonin treatment 

recovers scopolamine-induced spatial learning and short-term memory impairments and 

restores or increases scopolamine-induced decrease of cell proliferation and neuroblast 

differentiation in the mouse dentate gyrus (100). 

     In a very recent study(101), demonstrated that melatonin prevented valproic acid induced 

spatial and non-spatial memory impairments and an abatement in hippocampal neurogenesis 

in male Sprague-dawley rats. Valproic acid is an anti-epileptic drug and it adversely affected 

hippocampal neurogenesis and memory. Whereas, methotrexate which is a chemotherapy 

agent is linked to cognitive deficits associated with decreased cell proliferation in the 

hippocampus in cancer patients. Interestingly, the neuroprotective potential of melatonin in 

diminishing the detrimental effects of methotrexate on memory and neurogenesis was 

validated (102). Besides, the neurotoxic effects of pesticide fenvalerate are well known. 

Melatonin significantly debilitated fenvalerate induced upregulation of pro-apoptotic genes 

like Bax, Fas, caspase 8, caspase 9, and caspase 3 and downregulation of anti-apoptotic gene 

Bcl-2. In addition, melatonin also prevented the decrease in the expression of neurogenesis-

related genes (Distal-Less Homeobox 2 (Dlx2), Sonic hedgehog protein A precursor (Shha), 

Neurogenin1 (Ngn1), ELAV Like RNA Binding Protein 3 (Elavl3), and Glial fibrillary acidic 

protein (GFAP) in a zebrafish model (103).  
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     On the other note, several studies have demonstrated that methamphetamine, a 

psychostimulant drug of abuse causes neurotoxic effects. Methamphetamine induces 

alterations in hippocampal neurogenesis (104, 105) and has been reported to disrupt 

development of neural progenitor cells in young adult nonhuman primates (106). In this 

context, melatonin administration attenuated methamphetamine induced inhibition of 

neurogenesis in the hippocampus of adult mouse (107). Melatonin also prevented a 

methamphetamine-induced reduction in cell proliferation (108) and abrogated 

dexamethasone-induced reductions in Ki-67 and alterations in G1-S phase cell cycle 

regulators in progenitor cells derived from the adult rat hippocampus (109). 

     To date, many different mechanisms have been proposed to cause dendritic spine 

dysfunction and loss in AD (110). Structural abnormalities in AD are characterized by 

decreased hippocampal volume and shrunken cortex. These structural changes are associated 

with diminished memory performance. The hilar neurons of the hippocampus integrate 

spatial memory and are lost in dementia. Melatonin increases dendrite maturation and 

complexity in new neurons formed in the dentate gyrus of adult mice (40) and repaired the 

loss of hippocampal dendrites by increasing calmodulin levels, activating Ca2+/calmodulin-

dependent protein kinase II (CaMKII) thereby, eliciting dendritogenesis via protein kinase C 

(PKC) and its receptor activation (111).  

     Information from preclinical studies has shown that compounds with antidepressant effect 

possibly regulate adult hippocampal neurogenesis where enhancing the adult neurogenesis 

has been suggested to treat depression and anxiety (112). A human study in depressed 

subjects revealed that the decreased levels of melatonin corresponded to the diminished levels 

of neurotrophin-3 (NT-3), BDNF and NGF when compared to healthy controls (113). In this 

context, melatonin also possesses antidepressant like effects (114) along with its ability to 

regulate adult hippocampal neurogenesis.  

     Furthermore, in combination with exercise, melatonin increased the number of BrdU-

positive Nestin-expressing endogenous neural stem cells in a rat model of spinal cord injury 

(115) and potentiated running wheel-induced hippocampal neurogenesis by enhancing 

neuronal survival suggesting that the combination of physical exercise and melatonin may be 

an effective treatment for diseases affecting the hippocampus neurogenesis (116). The fact 

that agents promoting BDNF signaling might be effective in treating and preventing AD 

(117) supports the probability of melatonin as an anti-AD compound based on the study by 

(100) which showed that melatonin treatment increased BDNF and tropomyosin receptor 

kinase B (TrkB) expressions in the mouse dentate gyrus. 

     Ischemia affects the neurovascular complex of the AD brain by altering the cholinergic 

system in concomitance with vascular pathology as observed in mice models (118). Whereas, 

melatonin pretreatment increased survival of mesenchymal stem cells in vitro and reduced 

apoptosis after transplantation into ischemic rat brain (119) and played a role in protecting 

the cholinergic system (120). Moreover, treatment with melatonin after stroke dramatically 

enhanced endogenous neurogenesis and cell proliferation in the peri-infarct regions of mice 

by activating melatonin receptors (6) and has been beneficial for treating cerebral infarction 

(36). Melatonin also upregulated GDNF expression (121) and enhanced glial cell survival in 

case of cerebral ischemia (122) which depicts yet another therapeutic mechanism of 

melatonin action in alleviating pathological mechanisms in AD. 

 

3.5. Melatonin analogs in inducing neurogenesis in pathological conditions. 

 

     Neurons produced within canonical stem cell niches play a significant role in cognitive 

tasks (51, 52); therefore, endogenous stem/progenitor cells have been investigated as a way 

of enhancing cognition in the diseased brain (50). Cognitive health of an organism is 
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maintained by the capacity of hippocampal neurogenesis which plays an important role in 

ameliorating the deficits in neurodegenerative diseases.  

     The immunological mechanisms in the brain have diverse interactions with the AD 

pathogenesis where aggregated proteins trigger release of inflammatory mediators, which are 

responsible for disease progression and severity (123). Interestingly, niche-derived 

inflammatory signals induce quiescence as observed in aging brain which is accompanied by 

a systematic drop in the NSCs which is considered as a rescue response that prevents 

exhaustive depletion of these resting cells (124). Systemic neuroinflammation induced 

enhancement of proinflammatory cytokines pose negative impact on neurogenesis and on the 

cognitive reserve as observed in progressive aging and neurodegenerative disorders like AD 

(125, 126).  An additional mechanism through which inflammation could disrupt cognitive 

function is through altering levels of neurotrophic factors in the brain such as BDNF etc. 

which are known to be critically involved in supporting memory formation, neurogenesis and 

LTP (127). In this context, melatonin has been known to immensely affect the immune cells 

functioning. As the pro-/anti-inflammatory aspect concerning neurogenesis extends to the 

role of macrophage/microglia polarization (128) and the capability of melatonin of favoring 

polarization, i.e., anti- vs. proinflammatory behavior (129) may be of substantial relevance. 

Our previous study demonstrated how melatonin significantly attenuated the pro-

inflammatory cytokines and enhanced BDNF in the hippocampus of aged mouse brain (97). 

Moreover, melatonin also reduced Aβ42 induced NFκB activation in neuroblastoma cell 

cultures (130) which gives a clear indication of its anti-inflammatory role in an aging and 

diseased brain. 

     Investigations have manifested that melatonin-based compounds promote the 

differentiation of NSCs into neuronal phenotype (131). N-Acetylserotonin is a precursor of 

melatonin involved in its biosynthesis. Not only this compound stimulates proliferation of 

neural progenitor cells in the hippocampus but also prevents sleep deprivation induced 

harmful effects (132, 133). Melatonin pretreatment and treatment with its metabolite N(1)-

acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), significantly ameliorated the radiation-

induced decline in the anti-doublecortin and Ki-67 positive cells in mouse brain (134, 135) 

and since oxidative stress is reported to be implicated in impaired neurogenesis, it is likely 

that antioxidants such as melatonin and its metabolites could restore or minimize cellular 

death in the hippocampal dentate gyrus (99). Agomelatine is a novel antidepressant acting as 

a melatonergic receptor agonist and serotonergic (5-HT (2C)) receptor antagonist. In adult 

rats, chronic agomelatine treatment enhanced cell proliferation and neurogenesis in the 

ventral hippocampus. Agomelatine increased the ratio of mature vs. immature neurons and 

enhanced neurite outgrowth of granular cells, suggesting an acceleration of maturation. The 

influence of agomelatine on maturation and survival was accompanied by a selective increase 

in the levels of BDNF (136) and it also increased hippocampal neurogenesis and ameliorated 

apoptosis in the hippocampus of rat brains exposed to stress (137). Previous studies have 

demonstrated that piromelatine (a melatonin and serotonin 5-HT1A and 5-HT1D agonist) 

exerts an antidepressant activity in rodent models of acute stress and improves cognitive 

impairments in a rat model of AD. Piromelatine ameliorates memory deficits in rats and this 

effect may be mediated by restoring hippocampal BDNF, cAMP-response element 

binding protein (CREB), and cytogenesis deficits (138). Recently, it has been shown that 

the melatonin analog 2-(2-(5-methoxy-1 H-indol-3-yl) ethyl)-5-methyl-1,3,4-oxadiazole 

(IQM316) induced hippocampal neurogenesis with concurrently preserving previously 

attained memories in adult mice (139). 
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4. ROLE OF MELATONIN IN REGULATING NEUROGENESIS VIA BETA 

AMYLOID PRECURSOR PROTEIN (βAPP) PROCESSING PATHWAYS (Figure 3) 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Melatonin regulates adult neurogenesis by regulating βAPP metabolism. 

     As increase in amyloidogenic cleavage of βAPP triggers an overproduction of AICD, 

which not only initiates the apoptotic process but also inhibits SOX2 expression at the 

transcriptional level (black lines) further leading to a diminution of ADAM10 transcription 

(for review; Sarlak et.al, 2016) subsequently impairing neurogenesis. Melatonin regulates 

the non-pathological βAPP homeostasis by stimulating the non-amyloidogenic processing 

and down regulating the amyloidogenic processing of βAPP. By decreasing the mRNA levels 

of both BACE1 (via NFκB) and PS1, melatonin might preclude the production of AICD and 

Aβ which implies its anti-apoptotic effects and simultaneous regulation of Aβ induced 

alterations in neurogenesis. Parallelly melatonin enhances sAPPα and stimulates ADAM10 

levels by increasing its promoter transactivation. Increase in sAPPα down regulates CDK5 

induced tau hyperphosphorylation. By stimulating SOX2 levels which are involved in 

transcriptional regulation of ADAM10, melatonin thereby augments the neurogenic 

processes. AICD, amyloid precursor protein intracellular domain; SOX2, SRY (Sex 

determining region Y)-box 2; ADAM10, A disintegrin and metalloproteinase domain-

containing protein 10; BACE1, Beta-site amyloid precursor protein cleaving enzyme 1; 

NFκB, Nuclear factor kappa-light-chain-enhancer of activated B cells; PS1, Presenilin 1; 

AβAmyloid beta -peptide; sAPPα, Soluble amyloid precursor protein alpha; CDK5, Cyclin-

dependent kinase 5. 

 

     The neurodegenerative events of AD progress throughout the temporal, frontal and 

parietal lobes (140) of the brain and it has been well known that hippocampus which is 

affected during early stages of AD is one of the two neurogenic niches of the adult brain 

(141). Therefore, impairment of neurogenesis is quite related to the disease progression itself. 

Beta amyloid precursor protein (βAPP) the precursor of amyloid beta (Aβ) is important for 

neuron generation, differentiation and neural migration (142, 143) as the embryonic 
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expression of βAPP peaks during neuronal differentiation and neurite outgrowth period (144, 

145). The studies performed on transgenic animals expressing mutant βAPP demonstrated 

decreased neurogenesis in adult brains (146-149). Noteworthy is that melatonin levels are 

decreased in blood and cerebrospinal fluid (CSF) of AD patients and this reduction runs 

parallel with the progression of AD pathogenesis (150). Accumulation of 

hyperphosphorylated and aggregated tau reduces adult neurogenesis (151) and melatonin 

ameliorated Aβ and wortmannin-induced tau hyperphosphorylation (152, 153), 

neurodegeneration and memory deficits in mouse hippocampus. In vitro studies demonstrated 

that melatonin concentration dependently prevented Aβ induced apoptotic mechanisms in 

neuronal cell cultures due to its anti-amyloidogenic properties (154, 155). Interestingly, 

melatonin reduced Aβ accumulation in hippocampus and entorhinal cortex and prevented the 

cognitive impairment in APP + presenilin1 (PS1) double transgenic (Tg) mouse model (156). 

Diminished α-secretase activity leads to AD-related pathology (157), whereas sAPPα is 

persistently involved in specific regulation of gene expression in hippocampus as 

demonstrated in rat experimental models (158).  

 

4.1. Nonamyloidogenic pathway. 

     In this context, the first demonstration that melatonin upregulates the nonamyloidogenic 

constitutive and regulated A Disintegrin and metalloproteinase domain-containing protein 10 

(ADAM10) and ADAM metallopeptidase domain 17 (ADAM17) proteases which enhances 

the neuroprotective sAPPα through melatonin receptor was provided by (159). Additionally, 

melatonin also prevented Aβ42 induced reduction in ADAM10 protein expression via its 

receptor activation involving Pin1/GSK3β/NF-κB pathway (130). An increase in ADAM10 

activity shifts the balance of βAPP processing toward soluble α-APP (sAPPα) (160) and 

protects the brain from amyloid deposition and tau pathology in the brain (161). As such the 

levels of ADAM10 are reduced in AD patients (162) and blocking sAPPα secretion or down 

regulating βAPP synthesis impairs the proliferation of epidermal growth factor responsive 

cells, which leads to decrease in number of neuronal progenitor cells in SVZ (163, 164). 

Whereas, both βAPP and PS1, the catalytic core of one of the enzymes that cleaves βAPP, 

play a role in regulation of neurogenesis during development and postnatally and how βAPP 

regulates neurogenesis in physiological conditions and in AD has been reviewed extensively 

(165). Neurogenesis declines with aging and sAPPα rescues age associated decline in neural 

progenitor cell proliferation (2). sAPPα protects neurons and promotes neurogenesis (166, 

167), enhances neurite outgrowth and presynaptic bouton density in differentiating NPCs 

isolated from both embryonic and adult brains (168, 169) and promotes neuronal 

differentiation. sAPPα protects neurons and promotes neurogenesis, possibly mediated by its 

ability to prevent over activation of cyclin-dependent kinase 5 (CDK5) and tau 

hyperphosphorylation (170). 

     sAPPα binds to SVZ progenitor cells expressing the EGF receptor and increase their 

proliferation (171) along with eliciting neuroprotection, synaptic plasticity, memory 

formation, neurogenesis, and neuritogenesis, while reducing amyloid and tau pathology in the 

brain (161). Melatonin enhances the α-secretase processing of βAPP and increases sAPPα 

levels (159) and increases reprogramming efficiency of NSC-derived pluripotent stem cells 

(N-iPS) cell generation (48).  

 

4.2. Amyloidogenic pathway. 

 

     Conversely to sAPPα function, amyloid precursor protein intracellular domain (AICD) has 

been shown to be a negative regulator of proliferation in neural progenitor cells (NPCs). 
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AICD negatively regulates the transcription of the epidermal growth factor receptor (EGFR), 

a receptor that drives NPCs proliferation (149, 172). Adult neurogenesis is functionally 

associated with AD-like neurodegeneration (173) as the increase in amyloidogenic processing 

of βAPP triggers an overproduction of AICD which has been shown to decrease hippocampal 

progenitor cell proliferation and survival in transgenic mice (174) and this increase in AICD 

expression after a certain point leads to apoptosis simultaneously inhibiting SOX2 expression 

at a transcriptional level which subsequently leads to an impairment of neurogenesis together 

with neurodegeneration thereby reducing ADAM10 transcription and sAPPα secretion (175, 

176) Melatonin enhances the expression of pluripotent genes-including (POU Class 5 

Homeobox 1 (Pou5f1), SOX2, Klf4, c-Myc, Nanog, Lin28a, and surface marker proteins 

from embryonic stem-like cells from rabbit blastocysts (177).  

     Although it has been shown that β-Site amyloid precursor protein cleaving enzyme 1 

(BACE1) inhibition improves cognitive functions and reverse amyloid deposition in an 

5xFAD mouse model (178), but due to its involvement in regulation of adult hippocampal 

neurogenesis the complete therapeutic inhibition of BACE1 activity would certainly 

dysregulate neurogenesis in adult mouse hippocampus (179). Therefore, it would be more 

reasonable to opt for partial inhibition of BACE1 activity for therapeutic purposes. Whereas, 

PS1 is the catalytic core of the aspartyl protease γ-secretase which is also involved in 

regulation of the differentiation of adult NPCs (180). It has been demonstrated that 

knockdown of PS1 in NPCs in the sub granular layer of dentate gyrus induces learning 

impairments (181). As PS1 effect on neurogenesis is mediated via β-catenin phosphorylation 

and notch signaling, it is therefore speculated that inhibiting PS1 completely would affect the 

neurogenesis processes. Considering the above parameters, it would be meaningful to assess 

the therapeutic potential of melatonin. In this context, it has been shown that melatonin also 

down regulates the amyloidogenic processing of βAPP by regulating both β- and γ-secretases 

at the transcriptional level (182) without complete inhibition. Moreover, melatonin has been 

shown to reverse the age dependent alteration of βAPP cleaving secretases in hippocampus of 

aged mouse (183). Overall, it could be speculated how this multifunctional indoleamine could 

possibly regulate neurogenesis in pathological conditions like AD. 

 

5. MELATONIN DOSES AND CONCENTRATIONS EMPLOYED IN VITRO WITH 

THE PRESUMPTIVE THERAPEUTIC DOSES IN HUMANS 

 

     Therapeutic effects of melatonin have been reported in large number of disorders of 

different etiologies such as neurodegenerative disorders, cardiovascular diseases, sleep 

disorders, psychiatric disorders etc. Regarding its production nearly 80% of the melatonin is 

synthesized at night, with serum concentrations varying between (80-120 pg/ml) whereas low 

serum concentrations (10-20 pg/ml) are present during the daylight hours. In humans, 1-5mg 

has been considered as an average dosage range where the bioavailability also depends upon 

the route of administration (184, 185). An important retrospective study on the efficacy of 

melatonin in AD patients revealed that 9 mg gelatin melatonin capsules p.o. daily at bedtime 

for 22 to 35 months stabilized the sleep and cognitive disorders (186). However, melatonin as 

high as 20mg have also been used in malignancies. Several in vitro studies have shown that 

the pharmacologic concentrations of melatonin is 1 mM, but the physiological concentration 

in humans is about 70 pM. 

     Furthermore, on investigating in different animal models, melatonin at subacute dose of 4 

mg/kg/day for a continuous period of 29 days improved neuronal survival and enhanced 

neurogenesis in a stroke model of mice (187). Another study in adult Balb/C mice 

demonstrated that administration of oral melatonin at a dose of 10 mg/kg of body weight per 

day enhanced neurogenesis (188). Similarly, in the dentate gyrus of adult C57BL/6 mice in 
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vivo, exogenous melatonin (8 mg/kg) also increased the survival of neuronal progenitor cells 

and post-mitotic immature neurons (189). The administration of both physiological (5-10 

microg/kg) and pharmacological (20-320 microg/kg) doses produced different effects on 

sleep efficiency in three species of diurnal nonhuman primates as these could possibly serve 

as adequate animal models for studying the mechanisms of melatonin's action on such 

disorders (190).  

     Referring to the brain, a number of evidence which have been accumulated from studies 

on various neurodegeneration models and clinical reports support the use of melatonin for the 

preventive treatment of major neurodegenerative disorders like AD, Parkinson disease, 

Huntington's disease and Amyotrophic Lateral Sclerosis (191). Additional studies are 

required to identify the specific therapeutic concentrations and the dose-response 

relationships to test the clinical efficacy of melatonin supplementation (192) in various 

disorders in order to extend the use of melatonin in clinical practice, prevention and 

treatment. However, regarding the therapeutic aftermath of melatonin use in enhancing 

neurogenesis in humans need substantive clinical evidence before any precise 

recommendations can further be formulated. 

 

6. SUMMARY 

     The complex circuitry between neuroregenerative and neurodegenerative processes 

revolves around the mechanisms interlinked between the parameters coupled with 

neurogenesis. The homeostatic balance between these variables goes awry in degenerative 

diseases like AD. The phenomenal regulation of neurogenesis by melatonin reveals a 

remarkable regulatory network of this indoleamine in governing not only the molecular 

events which occur during the development of the disease but also regulating stem cells 

which have the potential to repair brain damage and may aid in developing novel strategies 

for neurodegenerative disease therapy.  
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