Neural glymphatic system: Clinical implications and potential importance of melatonin
The glymphatic system and melatonin
Abstract
The central nervous system was thought to lack a lymphatic drainage until the recent discovery of the neural glymphatic system. This highly specialized waste disposal network includes classical lymphatic vessels in the dura that absorb fluid and metabolic by-products and debris from the underlying cerebrospinal fluid (CSF) in the subarachnoid space. The subarachnoid space is continuous with the Virchow-Robin peri-arterial and peri-vascular spaces which surround the arteries and veins that penetrate into the neural tissue, respectively. The dural lymphatic vessels exit the cranial vault via an anterior and a posterior route and eventually drain into the deep cervical lymph nodes. Aided by the presence of aquaporin 4 on the perivascular endfeet of astrocytes, nutrients and other molecules enter the brain from peri-arterial spaces and form interstitial fluid (ISF) that baths neurons and glia before being released into peri-venous spaces. Melatonin, a pineal-derived secretory product which is in much higher concentration in the CSF than in the blood, is believed to follow this route and to clear waste products such as amyloid-β from the interstitial space. The clearance of amyloid-β reportedly occurs especially during slow wave sleep which happens concurrently with highest CSF levels of melatonin. Experimentally, exogenously-administered melatonin defers amyloid-β buildup in the brain of animals and causes its accumulation in the cervical lymph nodes. Clinically, with increased age CSF melatonin levels decrease markedly, co-incident with neurodegeneration and dementia. Collectively, these findings suggest a potential association between the loss of melatonin, decreased glymphatic drainage and neurocognitive decline in the elderly.
References
2. Clarke DD, Sokoloff L (1999) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th edition (Lippincott-Raven, Philadelphia.
3. Jessen NA,. Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: A Beginner's Guide. Neurochem. Res. 40: 2583-2599. http://dx.doi.org/10.1007/s11064-015-1581-6.
4. Nycz B, Mandera M (2021) The features of the glymphatic system. Auton. Neurosci. 232: 102774. http://dx.doi.org/10.1016/j.autneu.2021.102774.
5. Khasawneh AH, Garling RJ, Harris CA (2018) Cerebrospinal fluid circulation: What do we know and how do we know it? Brain. Circ. 4: 14-18. http://dx.doi.org/10.4103/bc.bc_3_18.
6. Benveniste H, Lee H, Volkow ND (2017) The glymphatic pathway: Waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 23: 454-465. http://dx.doi.org/10.1177/1073858417691030.
7. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93: 1847-1892. http://dx.doi.org/10.1152/physrev.00004.2013.
8. Proulx ST (2021) Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol. Life Sci. 78 (6): 2429-2457. doi: 10.1007/s00018-020-03706-5.
9. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11: 10-10. http://dx.doi.org/10.1186/2045-8118-11-10.
10. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, et al. (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 1: 2. http://dx.doi.org/10.1186/1743-8454-1-2.
11. Cherian I, Beltran M, Kasper EM, Bhattarai B, et al. (2016) Exploring the Virchow-Robin spaces function: A unified theory of brain diseases. Surg. Neurol. Int. 7: S711-S714. http://dx.doi.org/10.4103/2152-7806.192486.
12. Iliff JJ, Wang M, Liao Y, Plogg BA, et al. (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4: 147ra111. http://dx.doi.org/10.1126/scitranslmed.3003748.
13. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol. 17: 1016-1024. http://dx.doi.org/10.1016/s1474-4422(18)30318-1.
14. Mestre H, Hablitz LM, Xavier AL, Feng W et al. (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7: e40070. http://dx.doi.org/10.7554/eLife.40070.
15. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, et al. (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33: 18190-18199. http://dx.doi.org/10.1523/JNEUROSCI.1592-13.2013.
16. Xie L, Kang H, Xu Q, Chen MJ. et al. (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373-377. http://dx.doi.org/10.1126/science.1241224.
17. Lee H, Xie L, Yu M, Kang H, et al. (2015) The Effect of body posture on brain glymphatic transport. J. Neurosci. 35: 11034-11044. http://dx.doi.org/10.1523/JNEUROSCI.1625-15.2015.
18. Aspelund A, Antila S, Proulx ST, Karlsen TV, et al. (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212: 991-999. http://dx.doi.org/10.1084/jem.20142290.
19. Louveau A, Smirnov I,. Keyes TJ,. Eccles JD, et al. (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523: 337-341. http://dx.doi.org/10.1038/nature14432.
20. Tamura R, Yoshida K, Toda M (2020) Current understanding of lymphatic vessels in the central nervous system. Neurosurg. Rev. 43: 1055-1064. http://dx.doi.org/10.1007/s10143-019-01133-0.
21. Ahn JH, Cho H, Kim JH, Kim SH, et al. (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572: 62-66. http://dx.doi.org/10.1038/s41586-019-1419-5.
22. Apostolova LG (2016) Alzheimer disease. Continuum (Minneap Minn) 22: 419-434. http://dx.doi.org/10.1212/CON.0000000000000307.
23. Ferini-Strambi L, Hensley M, Salsone M (2021) Decoding causal links between sleep apnea and Alzheimer's disease. J. Alzheimers Dis. 80: 29-40. http://dx.doi.org/10.3233/jad-201066.
24. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell. Biol. 8: 101-112. http://dx.doi.org/10.1038/nrm2101.
25. Miranda A, Montiel E, Ulrich H, Paz C (2021) Selective secretase targeting for Alzheimer's disease therapy. J. Alzheimers Dis. 81: 1-17. http://dx.doi.org/10.3233/jad-201027.
26. Patwardhan AG, Belemkar S (2021) An update on Alzheimer's disease: Immunotherapeutic agents, stem cell therapy and gene editing. Life Sci. 282: 1-9. 10.1016/j.lfs.2021.119790, 119790. http://dx.doi.org/10.1016/j.lfs.2021.119790.
27. Zetterberg H, Blennow K (2021) Moving fluid biomarkers for Alzheimer's disease from research tools to routine clinical diagnostics. Mol. Neurodegener. 16: 10. http://dx.doi.org/10.1186/s13024-021-00430-x.
28. Eidsvaag VA, Enger R, Hansson H-A, Eide PK, et al. (2017) Human and mouse cortical astrocytes differ in aquaporin-4 polarization toward microvessels. Glia. 65: 964-973. http://dx.doi.org/10.1002/glia.23138.
29. Mader S, Brimberg L (2019) Aquaporin-4 water channel in the brain and its implication for health and disease. Cells 8: 90. http://dx.doi.org/10.3390/cells8020090.
30. Verkhratsky A, V. Parpura, M. Pekna, M. Pekny et al. (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem. Soc. Trans. 42: 1291-1301. http://dx.doi.org/10.1042/bst20140107.
31. Hasan M, Genovese S, Fiorito S, Epifano F, et al. (2017) Oxyprenylated phenylpropanoids bind to MT1 melatonin receptors and inhibit breast cancer cell proliferation and migration. J. Nat. Prod. 80: 3324-3329. http://dx.doi.org/10.1021/acs.jnatprod.7b00853.
32. Smith AJ, Duan T, Verkman AS (2019) Aquaporin-4 reduces neuropathology in a mouse model of Alzheimer’s disease by remodeling peri-plaque astrocyte structure. Acta Neuropathol. Commun. 7: 74. http://dx.doi.org/10.1186/s40478-019-0728-0.
33. Zeppenfeld DM, Simon M. Haswell JD, D'Abreo D, et al. (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 74: 91-99. http://dx.doi.org/10.1001/jamaneurol.2016.4370.
34. Kress BT, Iliff JJ, Xia M, Wang M, et al. (2014) Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76: 845-861. http://dx.doi.org/10.1002/ana.24271.
35. Beach TG, Wilson JR, Sue LI, Newell A, et al. (2007) Circle of Willis atherosclerosis: association with Alzheimer's disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol. 113: 13-21. http://dx.doi.org/10.1007/s00401-006-0136-y.
36. Colten HR, Altevogt BM (2006) Sleep disorders and sleep deprivation: An unmet public health problem. Sleep Physiology (National Academies Press (US), Institute of Medicine (US) Committee on Sleep Medicine and Research, Washington (DC), 2006).
37. Kang JE, Lim MM, Bateman RJ, Lee JJ, et al. (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326: 1005-1007. http://dx.doi.org/10.1126/science.1180962.
38. Fatemeh G, Sajjad M, Niloufar R, Neda S, et al. (2021) Effect of melatonin supplementation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. J. Neurol. 10.1007/s00415-020-10381-whttp://dx.doi.org/10.1007/s00415-020-10381-w.
39. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 9: 11-24. http://dx.doi.org/10.1016/j.smrv.2004.08.001 (E-Pub Feb).
40. Chen D, Zhang T, Lee TH (2020) Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules 10: 1158.
41. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12: 151-180. http://dx.doi.org/10.1210/edrv-12-2-151.
42. Agez L, Laurent V, Guerrero HY, Pévet P, et al. (2009) Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J. Pineal Res. 46: 95-105. http://dx.doi.org/10.1111/j.1600-079X.2008.00636.x.
43. Suofu Y, Li W, Jean-Alphonse FG, Jia J, et al. (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. U S A 114: E7997-E8006. http://dx.doi.org/10.1073/pnas.1705768114.
44. Reiter RJ, Ma Q, Sharma R (2020) Melatonin in mitochondria: mitigating clear and present dangers. Physiology (Bethesda) 35: 86-95. http://dx.doi.org/10.1152/physiol.00034.2019.
45. Su LY, Li H, Lv L, Feng YM, et al. (2015) Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/alpha-synuclein aggregation. Autophagy 11: 1745-1759. http://dx.doi.org/10.1080/15548627.2015.1082020.
46. Wongprayoon P, Govitrapong P (2017) Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol. Life Sci. 74: 3999-4014. http://dx.doi.org/10.1007/s00018-017-2614-x.
47. Hossain MF, Wang N, Chen R, Li S, et al. (2021) Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology. Ageing Res. Rev. 67: 101304. http://dx.doi.org/https://doi.org/10.1016/j.arr.2021.101304.
48. Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, et al. (2018) Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J. 17: 634-646. http://dx.doi.org/10.17179/excli2017-654.
49. Wakatsuki A, Okatani Y, Shinohara K, Ikenoue N, et al. (2001) Melatonin protects fetal rat brain against oxidative mitochondrial damage. J. Pineal Res. 30: 22-28. http://dx.doi.org/10.1034/j.1600-079x.2001.300103.x.
50. Alvarez-Diduk R, Galano A, Tan DX, Reiter RJ (2015) N-Acetylserotonin and 6-hydroxymelatonin against oxidative stress: Implications for the overall protection exerted by melatonin. J. Phys. Chem. B 119: 8535-8543. http://dx.doi.org/10.1021/acs.jpcb.5b04920.
51. Reiter RJ, Tan DX, Kim SJ, Cruz MH (2014) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct. Funct. 219: 1873-1887. http://dx.doi.org/10.1007/s00429-014-0719-7.
52. Li Y, Zhang J, Wan J, Liu A, et al. (2020) Melatonin regulates Abeta production/clearance balance and A beta neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed. Pharmacother. 132: 110887. http://dx.doi.org/10.1016/j.biopha.2020.110887.
53. Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science 370: 50-56. http://dx.doi.org/10.1126/science.abb8739.
54. Sun BL, Wang LH, Yang T, Sun JY, et al. (2018) Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol. 163-164: 118-143. http://dx.doi.org/10.1016/j.pneurobio.2017.08.007.
55. Shukla M, Govitrapong P, Boontem P, Reiter RJ, et al. (2017) Mechanisms of melatonin in alleviating Alzheimer's disease. Curr. Neuropharmacol. 15: 1010-1031. http://dx.doi.org/10.2174/1570159X15666170313123454.
56. Wang S, Zhu L, Shi H, Zheng H., t al. (2007) Inhibition of melatonin biosynthesis induces neuro filament hyperphosphorylation with activation of cyclin-dependent kinase 5. Neurochem. Res. 32: 1329-1335. http://dx.doi.org/10.1007/s11064-007-9308-y.
57. Pappolla MA, Bozner P, Soto C, Shao H, et al. (1998) Inhibition of Alzheimer β-fibrillogenesis by melatonin. J. Biol. Chem. 273: 7185-7188. http://dx.doi.org/https://doi.org/10.1074/jbc.273.13.7185.
58. Pappolla MA, Matsubara E. Vidal R, Pacheco-Quinto J, et al. (2018) Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr. Alzheimer Res. 15: 637-642. http://dx.doi.org/10.2174/1567205015666180411092551.
This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in Melatonin Res., copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.
In exceptional circumstances articles may be licensed differently. If you have specific condition (such as one linked to funding) that does not allow this license, please mention this to the editorial office of the journal at submission. Exceptions will be granted at the discretion of the publisher.