Melatonin and calpeptin synergistically protect against post-reperfusion injury in a rat middle cerebral artery occlusion stroke model

Melatonin and calpeptin in post-reperfusion injury

  • Ye Feng Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
  • Qian Xu Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
  • Raymond Tak Fai Cheung Department of Medicine and Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
Keywords: melatonin, calpeptin, ischemic stroke, neuroprotection, ischemia, reperfusion

Abstract

Cerebral ischemia induces oxidative injury and increases the intracellular calcium ion concentration to activate several calcium-dependent proteases such as calpains. Calpain activation leads to various necrotic and apoptotic processes. Calpeptin is a potent, cell-permeable calpain inhibitor. As a strong antioxidant and free radical scavenger, melatonin shows beneficial effect in rodent models of focal cerebral ischemia when given prior to ischemia or reperfusion. This study was focused on the neuroprotective effects of melatonin and/or calpeptin given after onset of reperfusion. For this purpose, right-sided middle cerebral artery occlusion (MCAO) for 90 minutes followed by 24 or 72 hours of reperfusion was performed in male Sprague Dawley rats, then, melatonin 50 or 150 µg/kg, calpeptin 10, 15 or 50 µg/kg or a combination of melatonin 50 µg/kg plus calpeptin 15 or 50 µg/kg were injected via an intracerebroventricular route at 15 minutes after onset of reperfusion. Melatonin or calpeptin tended to reduce the relative infarct volume and significantly decreased the neurological deficit at 24 hours. The combination achieved a greater protection than each of them alone. Melatonin, calpeptin or the combination all decreased Fluoro-Jade B (FJB)+ degenerative neurons and cleaved/total caspase-3 ratio at 24 hours. These treatments did not significantly impact the density of surviving neurons and ED-1+ macrophage/activated microglia. At the 72-hour-reperfusion, melatonin or the combination decreased the relative infarct volume and neurological deficit. Nevertheless, only the combination reduced FJB+ degenerating neurons at 72 hours. In conclusion, a combination of melatonin and calpeptin exerted synergistic protection against post-reperfusion injury in a rat MCAO stroke model.


References

1. Cheung RT (2001) Cerebrovascular disease--advances in management. Hong Kong Med. J. 7: 58–66.
2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141: e139–e596.
3. Musuka TD, Wilton SB, Traboulsi M, Hill MD (2015) Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ 187: 887–893.
4. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, von Kummer R, Lansberg M, Lindley RI, Murray G, Olivot JM, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, del Zoppo GJ, Baigent C, Sandercock P, Hacke W, Stroke Thrombolysis Trialists' Collaborative Group (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384: 1929–1935.
5. Goyal M, Almekhlafi M, Dippel DW, Campbell BCV, Muir K, Demchuk AM, Bracard S, Davalos A, Guillemin F, Jovin TG, Menon BK, Mitchell PJ, Brown S, White P, Majoie CBLM, Saver JL, Hill MD, HERMES Collaborators (2019) Rapid alteplase administration improves functional outcomes in patients with stroke due to large vessel occlusions. Stroke 50: 645–651.
6. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, Tilley BC, Davis SM, Donnan GA, Hacke W; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group, Allen K, Mau J, Meier D, del Zoppo G, De Silva DA, Butcher KS, Parsons MW, Barber PA, Levi C, Bladin C, Byrnes G (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375: 1695–1703.
7. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379: 2364–2372.
8. Pei Z, Ho HT, Cheung RT (2002) Pre-treatment with melatonin reduces volume of cerebral infarction in a permanent middle cerebral artery occlusion stroke model in the rat. Neurosci. Lett. 318: 141–144.
9. Pei Z, Pang SF, Cheung RT (2003) Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34: 770–775.
10. Peng S, Kuang Z, Zhang Y, Xu H, Cheng Q (2011) The protective effects and potential mechanism of calpain inhibitor calpeptin against focal cerebral ischemia-reperfusion injury in rats. Mol. Biol. Rep. 38: 905–912.
11. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell. Mol. Life Sci. 74: 3989–3998.
12. Kato H, Kogure K (1999) Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell. Mol. Neurobiol. 19: 93–108.
13. Bartus RT, Dean RL, Mennerick S, Eveleth D, Lynch G (1998) Temporal ordering of pathogenic events following transient global ischemia. Brain Res. 790: 1–13.
14. Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 96: 23–31.
15. Cheng S-Y, Wang S-C, Lei M, Wang Z, Xiong K (2018) Regulatory role of calpain in neuronal death. Neural Regen. Res. 13: 556–562.
16. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci. 23: 20–26.
17. Takaoka M, Itoh M, Kohyama S, Shibata A, Ohkita M, Matsumura Y (2000) Proteasome inhibition attenuates renal endothelin-1 production and the development of ischemic acute renal failure in rats. J. Cardiovasc. Pharmacol. 36: S225–S227.
18. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM (2001) Preload induces troponin I degradation independently of myocardial ischemia. Circulation 103: 2035–2037.
19. Das A, Sribnick EA, Wingrave JM, Del Re AM, Woodward JJ, Appel SH, Banik NL, Ray SK (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J. Neurosci. Res. 81: 551–562.
20. Bartus RT, Baker KL, Heiser AD, Sawyer SD, Dean RL, Elliott PJ, Straub JA (1994) Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J. Cereb. Blood Flow Metab. 14: 537–544.
21. Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25: 663–669.
22. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 54: 127–138.
23. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA 114: E7997–E8006.
24. Manchester LC, Poeggeler B, Alvares FL, Ogden GB, Reiter RJ (1995) Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cell. Mol. Biol. Res. 41: 391–395.
25. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 57: 131–146.
26. García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal-Pérez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J. Pineal Res. 56: 225–237.
27. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51: 1–16.
28. Sarkar S, Chattopadhyay A, Bandyopadhyay D (2021) Multiple strategies of melatonin protecting against cardiovascular injury related to inflammation: A comprehensive overview. Melatonin Res. 4, 1: 1–29.
29. Burkhardt S, Reiter RJ, Tan DX, Hardeland R, Cabrera J, Karbownik M (2001) DNA oxidatively damaged by chromium(III) and H(2)O(2) is protected by the antioxidants melatonin, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, resveratrol and uric acid. Int. J. Biochem. Cell. Biol. 33: 775–783.
30. Ressmeyer AR, Mayo JC, Zelosko V, Sáinz RM, Tan DX, Poeggeler B, Antolín I, Zsizsik BK, Reiter RJ, Hardeland R (2003) Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 8: 205–213.
31. Reiter RJ, Tan DX, Leon J, Kilic U, Kilic E (2005) When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp. Biol. Med. 230: 104–117.
32. Pundik S, Xu K, Sundararajan S (2012) Reperfusion brain injury: focus on cellular bioenergetics. Neurology 79: S44–S51.
33. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40: 1877–1885.
34. Joo JY, Uz T, Manev H (1998) Opposite effects of pinealectomy and melatonin administration on brain damage following cerebral focal ischemia in rat. Restor. Neurol. Neurosci. 13: 185–191.
35. Zhang J, Guo JD, Xing SH, Gu SL, Dai TJ (2002) The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils]. Acta Pharm. Sin. 37: 329–333.
36. Letechipía-Vallejo G, González-Burgos I, Cervantes M (2001) Neuroprotective effect of melatonin on brain damage induced by acute global cerebral ischemia in cats. Arch. Med. Res. 32: 186–192.
37. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61: 253–278.
38. Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G (2019) Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci. 239: 117036.
39. Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J. Pineal Res. 62: 12395.
40. Wakatsuki A, Okatani Y, Shinohara K, Ikenoue N, Fukaya T (2001) Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. J. Pineal Res. 31: 167–172.
41. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J. Pineal Res. 42: 297–309.
42. Cook AM, Mieure KD, Owen RD, Pesaturo AB, Hatton J (2009) Intracerebroventricular administration of drugs. Pharmacotherapy 29: 832–845.
43. Pardridge WM (2011) Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8: 7.
44. Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol. Neurobiol. 53: 1741–1752.
45. Han J, Xu Y, Yu CX, Shen J, Wei YM (2008) Melatonin reverses the expression of morphine-induced conditioned place preference through its receptors within central nervous system in mice. Eur. J. Pharmacol. 594: 125–131.
46. Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, Yallapragada AV, Reiter RJ, Ray SK, Banik NL (2008) Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J. Pineal Res. 44: 348–357.
47. Tamtaji OR, Mirhosseini N, Reiter RJ, Azami A, Asemi Z (2019) Melatonin, a calpain inhibitor in the central nervous system: Current status and future perspectives. J. Cell. Physiol. 234: 1001–1007.
48. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.
49. Pitchaimani V, Arumugam S, Thandavarayan RA, Thiyagarajan MK, Aiyalu R, Sreedhar R, Nakamura T, Watanabe K (2012) Nootropic activity of acetaminophen against colchicine induced cognitive impairment in rats. J. Clin. Biochem. Nutr. 50: 241–244.
50. Liu L, Cheung RT (2013) Effects of pretreatment with a combination of melatonin and electroacupuncture in a rat model of transient focal cerebral ischemia. Evid. Based Complement. Alternat. Med. 2013: 953162.
51. Reglodi D, Tamás A, Lengvári I (2003) Examination of sensorimotor performance following middle cerebral artery occlusion in rats. Brain Res. Bull. 59: 459–466.
52. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26: 627–634; discussion 635.
53. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40: e331–e339.
54. Pei Z, Fung PC, Cheung RT (2003) Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. J. Pineal Res. 34: 110–118.
55. Butler TL, Kassed CA, Sanberg PR, Willing AE, Pennypacker KR (2002) Neurodegeneration in the rat hippocampus and striatum after middle cerebral artery occlusion. Brain Res. 929: 252–260.
56. Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J. Neurosci. Methods 179: 1–8.
57. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, Blümcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 44: 1167–1171.
58. Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr. Res. 39: 39–47.
59. Jian Z, Liu R, Zhu X, Smerin D, Zhong Y, Gu L, Fang W, Xiong X (2019) The involvement and therapy target of immune cells after ischemic stroke. Front. immunol. 10: 2167.
60. Witting A, Müller P, Herrmann A, Kettenmann H, Nolte C (2000) Phagocytic clearance of apoptotic neurons by microglia/brain macrophages in vitro: involvement of lectin‐, integrin‐, and phosphatidylserine‐mediated recognition. J. Neurochem. 75: 1060–1070.
61. Leung WH, Cheung RT (2021) Melatonin attenuates microglial activation and improves neurological functions in rat model of collagenase-induced intracerebral hemorrhage. Melatonin Res. 4: 360–376.
62. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J (2015) The role of microglia and myeloid immune cells in acute cerebral ischemia. Front. Cell. Neurosci. 8: 461.
63. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32: 1208–1215.
64. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J. Neuroinflammation 10: 4.
65. Zhang Y, Yang X, Ge X, Zhang F (2019) Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother. 109: 726–733.
66. Sinha K, Degaonkar MN, Jagannathan NR, Gupta YK (2001) Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats. Eur. J. Pharmacol. 428: 185–192.
67. Dominguez-Rodriguez A, Abreu-Gonzalez P, Chen Y (2019) Cardioprotection and effects of melatonin administration on cardiac ischemia reperfusion: Insight from clinical studies. Melatonin Res. 2: 100–105.
Published
2021-12-31
How to Cite
[1]
Feng, Y., Xu, Q. and Cheung, R. 2021. Melatonin and calpeptin synergistically protect against post-reperfusion injury in a rat middle cerebral artery occlusion stroke model. Melatonin Research. 4, 4 (Dec. 2021), 592-612. DOI:https://doi.org/https://doi.org/10.32794/mr112500114.
Section
Research Articles