Melatonin and phase separation: potential interactions and significance

Melatonin regulation of biomolecular condensates

  • Doris Loh Independent http://orcid.org/0000-0002-1693-4081
  • Russel J Reiter Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, Texas 78229, USA
Keywords: liquid‐liquid phase separation, biomolecular condensates, ATP, RNA, stress granules, cardiolipin, lipid raft, membrane fluidity, m6A modification

Abstract

This commentary explores the leading edge of current understanding of the potential interactions associated with melatonin and the regulation of membraneless organelles (MLOs) formed via liquid‐liquid phase separation (LLPS) presented in recently published hypothetical reviews. As the scientific community increasingly recognizes the relevance of biomolecular condensates as fundamental organizers and propellers of cellular biochemistry, and that LLPS may be the quintessential process that provides insight into elusive physiological and pathological cellular conditions, the ancient role of melatonin in this new and exciting framework of cellular biology must be fully realized to its maximum potential.

References

1. Lee K, Choi GH, Back K (2022) Functional characterization of serotonin n-acetyltransferase in archaeon thermoplasma volcanium. Antioxidants (Basel) 11 (3): 596 https://doi.org/10.3390/antiox11030596.
2. Reiter RJ, Rosales-Corral S, Tan DX, et al. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 74 (21): 3863–3881. https://doi.org/10.1007/s00018-017-2609-7.
3. Loh D, Reiter RJ (2022) Melatonin: Regulation of prion protein phase separation in cancer multidrug resistance. Molecules 27 (3), 705. https://doi.org/10.3390/molecules27030705.
4. Loh D, Reiter RJ (2021) Melatonin: Regulation of biomolecular condensates in neurodegenerative disorders. Antioxidants (Basel) 10 (9): 1483. https://doi.org/10.3390/antiox10091483.
5. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18 (5): 285–298. https://doi.org/10.1038/nrm.2017.7.
6. Poudyal RR, Pir Cakmak F, Keating CD, Bevilacqua PC (2018 ) Physical principles and extant biology reveal roles for rna-containing membraneless compartments in origins of life chemistry. Biochemistry 57 (17): 2509–2519. https://doi.org/10.1021/acs.biochem.8b00081.
7. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30 (2): 137–149. https://doi.org/10.1080/07391102.2012.675145.
8. Patel A, Malinovska L, Saha A et al. (2017) ATP as a biological hydrotrope. Science 356 (6339): 753–756. https://doi.org/10.1126/science.aaf6846.
9. Henninger J, Oksuz O, Shrinivas K et al. (2021) RNA-mediated feedback control of transcriptional condensates. Cell 184 (1): 207–225.e24. https://doi.org/10.1016/j.cell.2020.11.030.
10. Zhu S, Gu J, Yao J et al. (2022) Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in arabidopsis. Dev. Cell 57 (5): 583–597.e6. https://doi.org/10.1016/j.devcel.2022.02.005.
11. Riback JA, Katanski CD, Kear-Scott JL et al. (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168 (6): 1028–1040.e19. https://doi.org/10.1016/j.cell.2017.02.027.
12. Rhine K, Vidaurre V, Myong S (2020) RNA droplets. Annu. Rev. Biophys. 49: 247–265. https://doi.org/10.1146/annurev-biophys-052118-115508.
13. Tan DX, Hardeland R (2021) The reserve/maximum capacity of melatonin’s synthetic function for the potential dimorphism of melatonin production and its biological significance in mammals. Molecules 26 (23): 7302. https://doi.org/10.3390/molecules26237302.
14. Martín M, Macías M, León J, et al. (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int. J. Biochem. Cell Biol. 34 (4): 348–357. https://doi.org/10.1016/s1357-2725(01)00138-8.
15. Reiter R, Sharma R, Ma Q et al. (2020) Melatonin inhibits warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: A mechanistic hypothesis. Cell. Mol. Life Sci. 77 (13): 2527–2542. https://doi.org/10.1007/s00018-019-03438-1.
16. Jain S, Wheeler JR, Walters R et al. (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164 (3): 487–498. https://doi.org/10.1016/j.cell.2015.12.038.
17. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One Molecule, Many Derivatives: A Never-Ending Interaction of Melatonin with Reactive Oxygen and Nitrogen Species? J. Pineal Res. 42 (1): 28–42. https://doi.org/10.1111/j.1600-079X.2006.00407.x.
18. Villa-Pulgarín JA, Gajate C, Botet J et al. (2017) Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl. Trop. Dis. 11 (8): e0005805. https://doi.org/10.1371/journal.pntd.0005805.
19. Bolmatov D, McClintic WT, Taylor G, et al. (2019) Deciphering melatonin-stabilized phase separation in phospholipid bilayers. Langmuir 35 (37): 12236–12245. https://doi.org/10.1021/acs.langmuir.9b01534.
20. Amen T, Kaganovich D (2020) Stress granules sense metabolic stress at the plasma membrane and potentiate recovery by storing active pkc1. Sci. Signal. 13 (623): page number! https://doi.org/10.1126/scisignal.aaz6339.
21. Herlan G, Giese G, Wunderlich F (1979) Influence of nuclear membrane lipid fluidity on nuclear RNA release. Exp. Cell Res. 118 (2): 305–309. https://doi.org/10.1016/0014-4827(79)90155-1.
22. Hachiya N, Sochocka M, Brzecka A, Nuclear envelope and nuclear pore complexes in neurodegenerative diseases-new perspectives for therapeutic interventions. Mol. Neurobiol. 58 (3): 983–995. https://doi.org/10.1007/s12035-020-02168-x.
23. Ries R, Zaccara S, Klein P (2019) m6A Enhances the phase separation potential of mRNA. Nature 571 (7765): 424–428. https://doi.org/10.1038/s41586-019-1374-1.
24. Anders M, Chelysheva I, Goebel I (2018) Dynamic m6A methylation facilitates mrna triaging to stress granules. Life Sci, Alliance 1 (4): e201800113. https://doi.org/10.26508/lsa.201800113.
Published
2022-06-30
How to Cite
[1]
Loh, D. and Reiter, R.J. 2022. Melatonin and phase separation: potential interactions and significance. Melatonin Research. 5, 2 (Jun. 2022), 186-191. DOI:https://doi.org/https://doi.org/10.32794/mr112500128.