Melatonin: therapeutic potential for stroke and other neurodegenerative diseases
Melatonin and neurodegenerative diseases
Abstract
Neurodegenerative diseases are a serious health issue globally. High morbidity and mortality of these disorders lead to researchers further exploring more effective preventive and therapeutic remedies to combat these devastating diseases. An important strategy is to delay the progression of these debilitating diseases. The prevalence of neurodegenerative disease increases with aging which not only results in neuronal deterioration, but also causes the brain ischemia leading to stroke, and death. Melatonin, a potent endogenous antioxidant mainly secreted by the pineal gland, has often used in the treatment of neuropathologies with great success. Herein, we review the current evidence documenting melatonin’s therapeutic effects on neurodegenerative and brain ischemic diseases; we also summarize the known molecular mechanisms of its protective actions.
References
2. Mitchell KJ (2011) The genetics of neurodevelopmental disease. Curr. Opin. Neurobiol. 21( 1): 197-203.
3. Moreno-Jiménez EP, et al. (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat. Med. 25 (4): 554-560.
4. Dugger BN & Dickson DW (2017) Pathology of Neurodegenerative Diseases. Cold Spring Harbor perspect. Biol. 9 (7).
5. Gitler AD, Dhillon P, & Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech. 10 (5): 499-502.
6. Taoufik E & Probert L (2008) Ischemic neuronal damage. Current pharmaceutical design 14(33):3565-3573.
7. Shakir R & Norrving B (2017) Stroke in ICD-11: the end of a long exile. Lancet 389 (10087): 2373.
8. Gribkoff VK & Kaczmarek LK (2017) The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120:11-19.
9. Bald EM, Nance CS, & Schultz JL (2021) Melatonin may slow disease progression in amyotrophic lateral sclerosis: Findings from the Pooled Resource Open-Access ALS Clinic Trials database. Muscle Nerve 63 (4): 572-576.
10. Lu J, et al. (2019) Melatonin suppresses microglial necroptosis by regulating deubiquitinating enzyme A20 after intracerebral hemorrhage. Front. Immunol. 10: 1360.
11. Zarei S, et al. (2015) A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 6: 171.
12. Vriend J & Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J. Pineal Res. 58 (1): 1-11.
13. Slats D, Claassen JA, Verbeek MM, & Overeem S (2013) Reciprocal interactions between sleep, circadian rhythms and Alzheimer's disease: focus on the role of hypocretin and melatonin. Ageing Res. Rev. 12 (1): 188-200.
14. Pan J, Konstas AA, Bateman B, Ortolano GA, & Pile-Spellman J (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49 (2): 93-102.
15. Wang Y, Luo J, & Li SY (2019) Nano-curcumin simultaneously protects the blood-brain barrier and reduces m1 microglial activation during cerebral ischemia-reperfusion injury. ACS Appl. Mater. Interfaces 11 (4): 3763-3770.
16. Xing P, Ma K, Wu J, Long W, & Wang D (2018) Protective effect of polysaccharide peptide on cerebral ischemia‑reperfusion injury in rats. Mol. Med. Rep. 18 (6): 5371-5378.
17. Wu L, et al. (2020) Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front. Mol. Neurosci. 13: 28.
18. Liu Y, Qu X, Yan M, Li D, & Zou R (2022) Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Hum. Exp. Toxicol. 41: 9603271221125928.
19. Park HR, et al. (2018) Protective Effects of Spatholobi Caulis Extract on Neuronal Damage and Focal Ischemic Stroke/Reperfusion Injury. Mol.Neurobiol, 55 (6): 4650-4666.
20. Lu Z, et al. (2018) Curcumin protects cortical neurons against oxygen and glucose deprivation/reoxygenation injury through flotillin-1 and extracellular signal-regulated kinase1/2 pathway. Biochem. Biophys. Res. Commun. 496 (2): 515-522.
21. Millar LJ, Shi L, Hoerder-Suabedissen A, & Molnár Z (2017) Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 11: 78.
22. Lee RHC, et al. (2018) Cerebral ischemia and neuroregeneration. Neural Regen. Res. 13 (3): 373-385.
23. Thornton C, et al. (2017) Cell Death in the developing brain after hypoxia-ischemia. Front. Cell. Neurosci. 11: 248.
24. Leiva-Salinas C, et al. (2016) Prediction of early arterial recanalization and tissue fate in the selection of patients with the greatest potential to benefit from intravenous tissue-type plasminogen activator. Stroke 47 (2): 397-403.
25. Huang YG, et al. (2019) Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/ reperfusion injury. Neural Regen. Res. 14 (6): 954-961.
26. Nakka VP, Gusain A, Mehta SL, & Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol. Neurobiol. 37 (1):7-38.
27. Wong CH & Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr. Med. Chem. 15 (1): 1-14.
28. Feng D, et al. (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J. Pineal Res. 62 (3).
29. Sinha K, Degaonkar MN, Jagannathan NR, Gupta YK (2001) Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats. Eur. J. Pharmacol. 428 (2): 185-192.
30. Wang K, et al. (2020) Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Front. Neurosci. 14: 848.
31. Wei N, Pu Y, Yang Z, Pan Y, & Liu L (2019) Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion. Biomed. Pharmacother. 110: 203-212.
32. Yang B, et al. (2020) Melatonin plays a protective role by regulating miR-26a-5p-NRSF and JAK2-STAT3 pathway to improve autophagy, inflammation and oxidative stress of cerebral ischemia-reperfusion injury. Drug Des. Devel. Ther. 14: 3177-3188.
33. Tajiri S, et al. (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 11 (4): 403-415.
34. Lin YW, et al. (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int. J. Mol. Med. 42 (1): 182-192.
35. Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci. Ther. 15 (4): 345-357.
36. Saleh DO, Jaleel GAA, Al-Awdan SW, Hassan A, Asaad GF (2020) Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats. Res. Pharm. Sci. 15 (5): 418-428.
37. Hung YC, et al. (2008) Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J. Pineal Res. 45 (4): 459-467.
38. Mathers CD, Boerma T, Ma Fat D (2009) Global and regional causes of death. Br. Med. Bull. 92: 7-32.
39. Hossmann KA (2012) The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J. Cereb. Blood Flow Metab. 32 (7):1310-1316.
40. Feigin VL, et al. (2014) Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 383 (9913): 245-254.
41. Flynn RW, MacWalter RS, Doney AS (2008) The cost of cerebral ischaemia. Neuropharmacology 55 (3): 250-256.
42. Pandya RS, et al. (2011) Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent. Nerv. Syst. Agents Med. Chem. 11 (2):81-97.
43. Jin Y, et al. (2015) The shh signaling pathway is upregulated in multiple cell types in cortical ischemia and influences the outcome of stroke in an animal model. PloS one 10 (4): e0124657.
44. Wali B, Ishrat T, Won S, Stein DG, & Sayeed I (2014) Progesterone in experimental permanent stroke: a dose-response and therapeutic time-window study. Brain 137 (Pt 2):486-502.
45. Canazza A, Minati L, Boffano C, Parati E, Binks S (2014) Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front. Neurol.5:19.
46. Jin R, Zhu X, Li G (2014) Embolic middle cerebral artery occlusion (MCAO) for ischemic stroke with homologous blood clots in rats. J. Vis. Exp. 91: 51956.
47. Ritzenthaler T, et al. (2013) Dynamics of oxidative stress and urinary excretion of melatonin and its metabolites during acute ischemic stroke. Neurosci. Lett. 544: 1-4.
48. Zou LY, Cheung RT, Liu S, Li G, Huang L (2006) Melatonin reduces infarction volume in a photothrombotic stroke model in the wild-type but not cyclooxygenase-1-gene knockout mice. J. Pineal Res. 41 (2): 150-156.
49. Kilic E, et al. (2008) Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. J.Pineal Res. 45 (2): 142-148.
50. Chen KH, et al. (2020) Melatonin against acute ischaemic stroke dependently via suppressing .both inflammatory and oxidative stress downstream signallings. J. Cell. Mol. Med. 24 (18): 10402-10419.
51. Chen BH, et al. (2018) Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed. Pharmacother. 108: 687-697.
52. Kawada K, Ohta T, Tanaka K, Miyamura M, Tanaka S (2019) Addition of suvorexant to ramelteon therapy for improved sleep quality with reduced delirium risk in acute stroke patients. J Stroke Cerebrovasc. Dis. 28 (1): 142-148.
53. Wang X, et al. (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40 (5): 1877-1885.
54. Yawoot N, Govitrapong P, Tocharus C, Tocharus J (2021) Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. BioFactors 47 (1): 41-58.
55. Tai SH, et al. (2010) Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J. Pineal Res. 49 (4): 332-341.
56. Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ (2004) Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J. Pineal Res. 36 (3): 171-176.
57. Chen TY, et al. (2006) Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J. Pineal Res. 40 (3): 242-250.
58. Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav. Brain Funct. 2 (1): 15.
59. Srinivasan V (2002) Melatonin oxidative stress and neurodegenerative diseases. Indian J. Exp. Biol. 40 (6): 668-79
60. Duffy JF, Wang W, Ronda JM, & Czeisler CA (2022) High dose melatonin increases sleep duration during nighttime and daytime sleep episodes in older adults. J. Pineal Res. 73 (1): e12801.
61. Hadi F, et al. (2022) Safety and efficacy of melatonin, clonazepam, and trazodone in patients with Parkinson's disease and sleep disorders: a randomized, double-blind trial. Neurol. Sci. 43 (10): 6141-6148.
62. Xu H, et al. (2020) Efficacy of melatonin for sleep disturbance in middle-aged primary insomnia: a double-blind, randomised clinical trial. Sleep Med. 76: 113-119.
63. Yuge K, et al. (2020) Long-term melatonin treatment for the sleep problems and aberrant behaviors of children with neurodevelopmental disorders. BMC psychiatry 20 (1): 445.
64. Fang X, Han Q, Li S, Luo A (2022) Melatonin attenuates spatial learning and memory dysfunction in developing rats by suppressing isoflurane-induced endoplasmic reticulum stress via the SIRT1/Mfn2/PERK signaling pathway. Heliyon 8 (9): e10326.
65. Sun C, et al. (2020) Long-term oral melatonin alleviates memory deficits, reduces amyloid-β deposition associated with downregulation of BACE1 and mitophagy in APP/PS1 transgenic mice. Neurosci. lett. 735: 135192.
66. DeTure MA & Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14 (1): 32.
67. Mohammadi F, et al. (2020) Anticonvulsant effect of melatonin through ATP‐sensitive channels in mice. Fundam. Clin. Pharmacol. 34 (1): 148-155.
68. Hollingworth P, Harold D, Jones L, Owen MJ, Williams J (2011) Alzheimer's disease genetics: current knowledge and future challenges. Int. J. Geriat. Psychiatry 26 (8): 793-802.
69. Mayeux R,Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harbor Perspect. Med. 2 (8): a006239.
70. Leszek J, Sochocka M, & Gąsiorowski K (2012) Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer's disease. J. Neurol. Sci. 323 (1): 25-32.
71. Mustapic M, et al. (2012) Alzheimer’s disease and type 2 diabetes: the association study of polymorphisms in tumor necrosis factor-alpha and apolipoprotein E genes. Metab. Brain Dis. 27 (4): 507-512.
72. Nilsson P, Saido TC (2014) Dual roles for autophagy: Degradation and secretion of Alzheimer's disease Aβ peptide. BioEssays 36 (6): 570-578.
73. Raghavan NS, et al. (2020) Association between common variants in RBFOX1, an RNA-binding protein, and brain amyloidosis in early and preclinical alzheimer disease. JAMA Neuro. 77 (10): 1288-1298.
74. Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in alzheimer’s disease. Cells 8 (5):488.
75. Chen D, Zhang T, Lee TH (2020) Cellular mechanisms of melatonin: insight from neurodegenerative diseases. Biomolecules 10 (8): 1158.
76. Reiter RJ, et al. (2022) Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem. Biophys. Res. Commun. 605: 70-81.
77. Feng Z, et al. (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J. Pineal Res. 37 (2): 129-136.
78. Mahlberg R, et al. (2008) Pineal calcification in Alzheimer's disease: an in vivo study using computed tomography. Neurobiol. Aging 29 (2):203-209.
79. Ozcankaya R, Delibas N (2002) Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croat. Med. J. 43 (1): 28-32.
80. Wu Y-H, et al. (2003) Molecular changes underlying reduced pineal melatonin levels in alzheimer disease: Alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab.88 (12): 5898-5906.
81. Wu Y-H, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer's disease. J. Pineal Res. 38 (3):145-152.
82. Deng Y-q, Xu G-g, Duan P, Zhang Q, Wang J-z (2005) Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol. Sin. 26 (5): 519-526.
83. Cardinali DP, et al. (2012) Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis. 1 (3):280.
84. Furio AM, Brusco LI, Cardinali DP (2007) Possible therapeutic value of melatonin in mild cognitive impairment: a retrospective study. J. pineal Res. 43 (4): 404-409.
85. Lahiri DK (1999) Melatonin affects the metabolism of the β‐amyloid precursor protein in different cell types. J. Pineal Res. 26 (3): 137-146.
86. Li Y, Zhang J, Wan J, Liu A, Sun J (2020) Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother. 132: 110887.
87. Mayo JC, et al. (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 165 (1-2): 139-149.
88. Lee RKK, Knapp S, Wurtman RJ (1999) Prostaglandin E<sub>2</sub> Stimulates Amyloid Precursor Protein Gene Expression: Inhibition by Immunosuppressants. J. Neurosci. 19 (3): 940.
89. Shukla M, et al. (2015) Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res. 58 (2):151-165.
90. Chang H-M, Wu U-I, Lan C-T (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J. Pineal Res. 47 (3): 211-220.
91. Cristòfol R, et al. (2012) Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J. Pineal Res. 52 (3): 271-281.
92. Albani D, et al. (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by α-synuclein or amyloid-β (1-42) peptide. J. Neurochem. 110 (5): 1445-1456.
93. Wang J, et al. (2010) The role of Sirt1: At the crossroad between promotion of longevity and protection against Alzheimer's disease neuropathology. Biochim. Biophys. Acta 1804 (8): 1690-1694.
94. Chinchalongporn V, Shukla M, Govitrapong P (2018) Melatonin ameliorates Aβ42-induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J. Pineal Res. 64 (4): e12470.
95. Bitar RD, Torres-Garza JL, Reiter RJ, Phillips WT (2021) Neural glymphatic system: Clinical implications and potential importance of melatonin. Melatonin Res. 4 (4): 551-565.
96. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem. Res. 40 (12): 2583-2599.
97. De Lima VR, et al. (2010) Influence of melatonin on the order of phosphatidylcholine-based membranes. J. Pineal Res. 49 (2): 169-175.
98. Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid–cerebrospinal fluid exchange, amyloid-β, and sleep. Biol. psychiatry 83 (4): 328-336.
99. Iliff JJ, et al. (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34 (49):16180-16193.
100. Pappolla M, et al. (2018) Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr. Alzheimer Res. 15 (7):637-642.
101. Mishima K, et al. (1999) Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep–waking. Biol. Psychiatry 45 (4):417-421.
102. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson's disease. Rev. Neurol. 172 (1): 14-26.
103. Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson's disease. Curr. Opin. Neurol. 21 (4): 454-460.
104. Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311 (16): 1670-1683.
105. Chung KK, et al. (2001) Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7 (10): 1144-1150.
106. Adi N, et al. (2010) Melatonin MT1 and MT2 receptor expression in Parkinson's disease. Med. Sci. Monit. 16 (2): BR61-BR67.
107. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90 (4): 675-691.
108. Tan SH, et al. (2019) Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother. 111: 765-777.
109. Allan CL, Behrman S, Ebmeier KP, Valkanova V (2017) Diagnosing early cognitive decline—when, how and for whom? Maturitas 96: 103-108.
110. Furuya M, et al. (2012) Marked improvement in delirium with ramelteon: five case reports. Psychogeriatrics 12 (4): 259-262.
111. Zhang W, et al. (2016) Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials. Neurol. Sci. 37 (1): 57-65.
112. Patki G, Lau Y-S (2011) Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's disease. Pharmacol. Biochem. Behav. 99 (4): 704-711.
113. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinsons disease phenotype in the mouse. J. Pineal Res. 50 (2): 97-109.
114. Brito-Armas J, et al. (2013) Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histol. Histopathol. 28 (8): 999-1006.
115. Datieva V, Rosinskaia A, Levin O (2013) The use of melatonin in the treatment of chronic fatigue syndrome and circadian rhythm disorders in Parkinson's disease. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 113 (7 Pt 2): 77-81.
116. Ozsoy O, et al. (2015) Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model. Free Radic. Res. 49 (8): 1004-1014.
117. Ortiz GG, et al. (2013) Fish oil, melatonin and vitamin E attenuates midbrain cyclooxygenase-2 activity and oxidative stress after the administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Metab. Brain Dis. 28 (4): 705-709.
118. Chuang JI, et al. (2016) Melatonin prevents the dynamin‐related protein 1‐dependent mitochondrial fission and oxidative insult in the cortical neurons after 1‐methyl‐4‐phenylpyridinium treatment. J. Pineal Res. 61 (2): 230-240.
119. Antolı́n I, et al. (2002) Protective effect of melatonin in a chronic experimental model of Parkinson’s disease. Brain Res. 943 (2):163-173.
120. Chen ST, Chuang JI, Hong MH, Li EIC (2002) Melatonin attenuates MPP+‐induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway. J. Pineal Res. 32 (4): 262-269.
121. Yildirim FB, et al. (2014) Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease. Neurochem. Int. 79: 1-11.
122. Lopez A, et al. (2017) Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases. PloS one 12 (8): e0183090.
123. Eller M & Williams DR (2011) α-Synuclein in Parkinson disease and other neurodegenerative disorders. Clin. Chem. Lab. Med. 49 (3): 403-408.
124. Zarranz JJ, et al. (2004) The new mutation, E46K, of α‐synuclein causes parkinson and Lewy body dementia. Ann. Neurol. 55 (2):164-173.
125. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of α‐synuclein to the dopamine transporters accelerate dopamine‐induced apoptosis. FASEB J. 15 (6): 916-926.
126. Masliah E, et al. (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287 (5456):1265-1269.
127. Saha AR, et al. (2000) Induction of neuronal death by α‐synuclein. Eur. J. Neurosci. 12 (8): 3073-3077.
128. Chang AM, et al. (2012) Human responses to bright light of different durations. J. Physiol. 590 (13): 3103-3112.
129. Hoshi A, et al. (2017) Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson's disease. Brain Pathol. 27 (2): 160-168.
130. Schirinzi T, et al. (2019) CSF α-synuclein inversely correlates with non-motor symptoms in a cohort of PD patients. Parkinsonism Relat. Disord. 61: 203-206.
131. Naskar A, et al. (2013) Melatonin synergizes with low doses of L‐DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J. Pineal Res. 55 (3): 304-312.
132. Wallin MT, et al. (2019) Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18 (3):269-285.
133. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372 (9648):1502-1517.
134. Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 277: 58-67.
135. Bielekova B & Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127 (Pt 7): 1463-1478.
136. Haider L, et al. (2016) The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139 (Pt 3): 807-815.
137. Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M (2019) A review of various antioxidant compounds and their potential utility as complementary therapy in multiple sclerosis. Nutrients 11 (7): 1528.
138. Sandyk R, Awerbuch GI (1994) The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis. Int. J. Neurosci. 76 (1-2): 71-79.
139. Gholipour T, et al. (2015) Decreased urinary level of melatonin as a marker of disease severity in patients with multiple sclerosis. Iran J. Allergy Asthma. Immunol. 14 (1): 91-97.
140. Jand Y, et al. (2022) Melatonin ameliorates disease severity in a mouse model of multiple sclerosis by modulating the kynurenine pathway. Sci. Rep. 12 (1): 15963.
141. Devasagayam TP, et al. (2004) Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians. India 52: 794-804.
142. Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 116 (5): 3029-3085.
143. Woolbright BL, Rajendran G, Harris RA, Taylor JA 3rd (2019) Metabolic flexibility in cancer: Targeting the pyruvate dehydrogenase kinase:Pyruvate dehydrogenase axis. Mol. Cancer.Ther. 18 (10): 1673-1681.
144. Yagi K, et al. (2015) Therapeutically targeting tumor necrosis factor-α/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke 46 (8): 2260-2270.
145. Ghareghani M, Farhadi Z, Rivest S, Zibara K (2022) PDK4 inhibition ameliorates melatonin therapy by modulating cerebral metabolism and remyelination in an EAE demyelinating mouse model of multiple sclerosis. Front. Immunol. 13: 862316.
146. Alghamdi BS, AboTaleb HA (2020) Melatonin improves memory defects in a mouse model of multiple sclerosis by up-regulating cAMP-response element-binding protein and synapse-associated proteins in the prefrontal cortex. J. Integr. Neurosci. 19 (2): 229-237.
147. Sánchez-López AL, et al. (2018) Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 49 (6):391-398.
148. López‐González A, et al. (2015) Melatonin treatment improves primary progressive multiple sclerosis: a case report. J. Pineal Res. 58 (2): 173-177.
149. Hsu WY, et al. (2021) Effects of melatonin on sleep disturbances in multiple sclerosis: A randomized, controlled pilot study. J. Exp. Transl. Clin. 7 (4): 20552173211048756.
150. Kandel ER, et al. (2000) Principles of neural science (McGraw-hill New York).
151. Bates GP, et al. (2015) Huntington disease. Nat. Rev. Dis. Primers 1 (1): 15005.
152. Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10 (1):83-98.
153. Sánchez-López F, et al. (2012) Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol. Res. 34 (7): 721-724.
154. Tasset I, et al. (2013) Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington's disease-like rat model. Brain Stimul. 6 (1): 84-86.
155. Túnez I, et al. (2011) Important role of oxidative stress biomarkers in Huntington’s disease. J. Med. Chem. 54 (15): 5602-5606.
156. Rigamonti D, et al. (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20 (10): 3705-3713.
157. Browne SE, et al. (1997) Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41 (5): 646-653.
158. Kaur C, Ling E-A (2008) Antioxidants and neuroprotection in the adult and developing central nervous system. Curr. Med. Chem. 15 (29): 3068-3080.
159. Reiter RJ, et al. (2000) Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Neurosignals 9 (3-4):160-171.
160. Srinivasan V, et al. (2005) Role of melatonin in neurodegenerative diseases. Neurotox. Res. 7 (4): 293-318.
161. Tan D-X, et al. (2003) Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin. Ther. Pat. 13 (10):1513-1543.
162. Rigamonti D, et al. (2001) Huntingtin's neuroprotective activity occurs via inhibition of procaspase-9 processing. J. Biol. Chem. 276 (18):14545-14548.
163. Schulz JB & Beal MF (1994) Mitochondrial dysfunction in movement disorders. Curr. Opin. Neurol. 7 (4): 333-339.
164. Southgate G, Daya S (1999) Melatonin reduces quinolinic acid-induced lipid peroxidation in rat brain homogenate. Metab. Brain Dis. 14 (3): 165-171.
165. Christofides J, et al. (2006) Blood 5‐hydroxytryptamine, 5‐hydroxyindoleacetic acid and melatonin levels in patients with either Huntington's disease or chronic brain injury. J. Neurochem. 97 (4): 1078-1088.
166. van Wamelen DJ, et al. (2013) Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. Sleep 36 (1):117-125.
167. Wang X, et al. (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J. Neurosci. 31 (41): 14496-14507.
168. Gunata M, Parlakpinar H, & Acet HA (2020) Melatonin: A review of its potential functions and effects on neurological diseases. Rev. Neurol. 176 (3): 148-165.
169. Reiter RJ, et al. (1999) Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington's disease, Alzheimer's disease and parkinsonism. Ann. N. Y. Acad. Sci. 890 (1): 471-485.
170. Ahmed S, et al. (2017) Traumatic brain injury and neuropsychiatric complications. Indian. J. Psychol. Med. 39 (2): 114-121.
171. DeKosky ST. Asken BM (2017) Injury cascades in TBI-related neurodegeneration. Brain Inj. 31 (9): 1177-1182.
172. Blum B, Kaushal S, Khan S, Kim JH, Villalba CLA (2021) Melatonin in Traumatic brain injury and cognition. Cureus 13 (9):e17776.
173. Ozdemir D, et al. (2005) Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol. Res. 54 (6): 631-637.
174. Naeser MA, et al. (2016) Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomed. Laser Surg. 34 (12): 610-626.
175. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 17 (36): 4462-4481.
176. Osier N, et al. (2018) Melatonin as a therapy for traumatic brain Injury: A review of published evidence. Int. J. Mol. Sci. 19 (5): 1539.
177. Capizzi A, Woo J, & Verduzco-Gutierrez M (2020) Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med. Clin. North Am. 104 (2):213-238.
178. Beck JG, et al. (2008) The impact of event scale-revised: psychometric properties in a sample of motor vehicle accident survivors. J. Anxiety Disord. 22 (2): 187-198.
179. Barlow KM, Esser MJ, Veidt M, Boyd R (2019) Melatonin as a Treatment after traumatic brain injury: a systematic review and meta-analysis of the pre-clinical and clinical literature. J. Neurotrauma 36 (4): 523-537.
180. Gómez RM, et al. (2018) Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 66 (7): 1267-1301.
181. Hewson DW, Bedforth NM, Hardman JG (2018) Spinal cord injury arising in anaesthesia practice. Anaesthesia 73 Suppl 1: 43-50.
182. Yang L, et al. (2016) Melatonin for Spinal Cord Injury in Animal Models: A Systematic Review and Network Meta-Analysis. J. Neurotrauma 33(3):290-300.
183. Ghaisas MM, Ahire YS, Dandawate PR, Gandhi SP, Mule M (2011) Effects of combination of thiazolidinediones with melatonin in dexamethasone-induced insulin resistance in mice. Indian J. Pharm. Sci. 73 (6): 601-607.
184. Li C, et al. (2014) Melatonin lowers edema after spinal cord injury. Neural Regen. Res. 9 (24): 2205-2210.
185. Lee S & Notterpek L (2013) Dietary restriction supports peripheral nerve health by enhancing endogenous protein quality control mechanisms. Exp. Gerontol. 48 (10): 1085-1090.
186. Galán-Arriero I, et al. (2017) The role of Omega-3 and Omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma. Biochim. Biophys. Acta Biomembr. 1859 (9 Pt B): 1629-1635.
187. Bouyer-Ferullo S (2013) Preventing perioperative peripheral nerve injuries. AORN J. 97 (1): 110-124.e119.
188. Klymenko A, Lutz D (2022) Melatonin signalling in Schwann cells during neuroregeneration. Front. Cell Develo. Biol. 10: 999322.
189. Pan B, et al. (2021) Melatonin promotes Schwann cell proliferation and migration via the shh signalling pathway after peripheral nerve injury. The Eur. J. Neurosci. 53 (3): 720-731.
190. Özkan Y, et al. (2021) Comparison of the effects of electroacupuncture and melatonin on nerve regeneration in experimentally nerve-damaged rats. J. Acupunct. Meridian Stud. 14 (5): 176-182.
191. Yanilmaz M, et al. (2015) The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J. Craniofac. Surg. 26 (3): 667-672.
192. Liu CH, et al. (2020) Melatonin promotes nerve regeneration following end-to-side neurorrhaphy by accelerating cytoskeletal remodeling via the melatonin receptor-dependent pathway. Neuroscience 429: 282-292.
193. Lian L, et al. (2020) Neuroinflammation in ischemic stroke: Focus on microrna-mediated polarization of microglia. Front. Mol. Neurosci. 13: 612439.
194. He B, et al. (2016) The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. J. Pineal Res. 60 (3): 313-326.
195. Li J, et al. (2022) Melatonin ameliorates Parkinson's disease via regulating microglia polarization in a RORα-dependent pathway. NPJ Parkinson's Dis. 8 (1):90.
196. Zhang Y, et al. (2019) Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J. Neurosci. Res. 97 (7): 733-743.
197. Liu ZJ, et al. (2019) Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci. Ther. 25 (12): 1353-1362.
198. Lee MY, et al. (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J. Pineal Res. 42 (3): 297-309.
199. Spagnuolo G, et al. (2018) Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent. J. 6(4): 72.
200. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 45 (11): e54.
201. Sipp D, Robey PG, Turner L (2018) Clear up this stem-cell mess. Nature 561 (7724): 455-457.
202. Rodríguez-Lozano FJ, et al. (2015) Cytoprotective effects of melatonin on zoledronic acid-treated human mesenchymal stem cells in vitro. J. Craniomaxillofac. Surg. 43 (6):855-862.
203. Chen HH, et al. (2014) Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J. Pineal Res. 57 (1): 16-32.
204. Kadry SM, El-Dakdoky MH, Haggag NZ, Rashed LA, Hassen MT (2018) Melatonin improves the therapeutic role of mesenchymal stem cells in diabetic rats. Toxicol. Mech. Methods 28 (7): 529-538.
205. Mortezaee K, et al. (2017) Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res. 369 (2): 303-312.
206. Lee SJ, Jung YH, Oh SY, Yun SP, Han HJ (2014) Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Gαq in skin wound healing. J. Pineal Res. 57 (4): 393-407.
207. Danisovic L, et al. (2017) Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem Cells. J. Physiol. pharmacol. 68 (1): 149-158.
208. Ma Y, et al. (2013) Melatonin ameliorates injury and specific responses of ischemic striatal neurons in rats. J. Histochem. Cytochem. 61 (8): 591-605.
209. Calvo JR, González-Yanes C, Maldonado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J. Pineal Res. 55 (2): 103-120.
210. Zhang Z, et al. (2022) ADSCs Combined with Melatonin promote peripheral nerve regeneration through autophagy. Int. J. Endocrinol. 2022: 5861553.
211. Liu W, et al. (2021) Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J. Pineal Res. 71 (4): e12769.
212. Ramezani M, et al. (2020) Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer's disease. J. Chem. Neuroanat. 108: 101804.
213. Nasiri E, et al. (2019) Melatonin-pretreated adipose-derived mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer's disease. Metab. Brain Dis. 34 (4):1131-1143.
214. Tang Y, et al. (2014) Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplantat.23 (10): 1279-1291.
215. Lu D, et al. (2022) Melatonin offers dual-phase protection to brain vessel endothelial cells in prolonged cerebral ischemia-recanalization through ameliorating ER stress and resolving refractory stress granule. Transl. Stroke Res. doi: 10.1007/s12975-022-01084-7.
216. Bseiso EA, AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA (2022) Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv. 29 (1): 2469-2480.
217. Bseiso EA, Abd El-Aal SA, Nasr M, Sammour OA, Abd El Gawad NA (2022) Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia. Life Sci. 306: 120797.
218. Chen X, et al. (2022) Influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway. Comput. Math. Methods Med. 2022: 8202975.
219. Yawoot N, et al. (2022) Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K. J. Cell. Physiol. 237 (3): 1818-1832.
220. Liu L, et al. (2021) Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J. 35 (12): e22040.
221. Chen S, et al. (2022) Modulation of α7nAchR by Melatonin Alleviates Ischemia and Reperfusion-Compromised Integrity of Blood-Brain Barrier Through Inhibiting HMGB1-Mediated Microglia Activation and CRTC1-Mediated Neuronal Loss. Cell. Mol. Neurobiol. 42 (7): 2407-2422.
222. Liu L, et al. (2021) Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging 13 (12): 16105-16123.
223. Tuncer M, Pehlivanoglu B, Sürücü SH, Isbir T (2021) Melatonin improves reduced activities of membrane ATPases and preserves ultrastructure of gray and white matter in the rat brain ischemia/reperfusion model. Biochemistry 86 (5): 540-550.
224. Fenton-Navarro B, Garduño Ríos D, Torner L, Letechipía-Vallejo G, Cervantes M (2021) Melatonin decreases circulating levels of galectin-3 and cytokines, motor activity, and anxiety following acute global cerebral ischemia in male rats. Arch. Med. Res. 52 (5): 505-513.
225. Chen KH, et al. (2021) Synergic effect of combined cyclosporin and melatonin protects the brain against acute ischemic reperfusion injury. Biomed. Pharmacother.136: 111266.
226. Liu L, et al. (2019) Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci. 239: 117036.
227. Zang M, et al. (2020) The circadian nuclear receptor RORα negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin. Biochim. Biophys. Acta Mol. Basis. Dis. 1866 (11): 165890.
228. Chern CM, Liao JF, Wang YH, Shen YC (2012) Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic. Bio. Med. 52 (9): 1634-1647.
229. Lee S, et al. (2012) Beneficial effects of melatonin on stroke-induced muscle atrophy in focal cerebral ischemic rats. Lab. Anim. Res. 28 (1): 47-54.
230. Yang Y, et al. (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J. Pineal Res. 58 (1): 61-70.
231. Jang JW, et al. (2012) Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. J. Neurol. Sci. 323 (1-2): 221-227.
232. Jallouli S, et al. (2022) Effect of melatonin intake on postural balance, functional mobility and fall risk in persons with multiple sclerosis: a pilot study. Int. J. Neurosci.1:11.
233. Escribano BM, et al. (2022) Protective effects of melatonin on changes occurring in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Mult. Scler. Relat. Disord. 58: 103520.
234. Yosefifard M, Vaezi G, Malekirad AA, Faraji F, Hojati V (2019) A randomized control trial study to determine the effect of melatonin on serum levels of IL-1β and TNF-α in patients with multiple sclerosis. Iran. J. Allergy Asthma Immunol. 18 (6): 649-654.
235. Abo Taleb HA, Alghamdi BS (2020) Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J. Mol. Neurosci. 70 (3):386-402.
236. Ghareghani M, et al. (2019) Melatonin therapy modulates cerebral metabolism and enhances remyelination by increasing PDK4 in a mouse model of multiple sclerosis. Front. Pharmacol. 10: 147.
237. Emamgholipour S, Hossein-Nezhad A, Sahraian MA, Askarisadr F, Ansari M (2016) Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes. Life Sci. 145: 34-41.
238. Álvarez-Sánchez N, et al. (2017) Melatonin reduces inflammatory response in peripheral T helper lymphocytes from relapsing-remitting multiple sclerosis patients. J. Pineal Res. 63(4): e12442.
239. Khyati, Malik I, Agrawal N, Kumar V (2021) Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington's disease. Chronobiol. Int. 38 (1): 61-78.
240. Gupta S, Sharma B (2014) Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington's disease. Pharmacol. Biochem. Behav. 122: 122-135.
241. Chakraborty J, Nthenge-Ngumbau DN, Rajamma U, Mohanakumar KP (2014) Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington's disease. Behav. Brain Res. 264: 91-104.
242. Antunes Wilhelm E, Ricardo Jesse C, Folharini Bortolatto C, Wayne Nogueira C (2013) Correlations between behavioural and oxidative parameters in a rat quinolinic acid model of Huntington's disease: protective effect of melatonin. Eur. J. Pharmacol. 701 (1-3): 65-72.
243. Shen X, Tang C, Wei C, Zhu Y, Xu R (2022) Melatonin induces autophagy in amyotrophic lateral sclerosis mice via upregulation of SIRT1. Mol. Neurobiol. 59 (8): 4747-4760.
244. Zhang Y, et al. (2013) Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 55: 26-35.
245. Weishaupt JH, et al. (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 41 (4):313-323.
246. Kabadi SV, Maher TJ (2010) Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann. N. Y. Acad. Sci. 1199: 105-113.
247. Campolo M, et al. (2013) Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J. Endocrinol. 217 (3): 291-301.
248. Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N (2013) Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch. Med. Re. 44 (4): 251-258.
249. Ding K, et al. (2014) Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med. 73: 1-11.
250. Ding K, et al. (2014) Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible involvement of mTOR pathway. Neurochem. Int. 76: 23-31.
251. Senol N & Nazıroğlu M (2014) Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats. Neural Regen. Res. 9 (11): 1112-1116.
252. Yürüker V, Nazıroğlu M, Şenol N (2015) Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels. Metab. Brain Dis. 30 (1): 223-231.
253. Babaee A, et al. (2015) Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iran. J. Basic Med. Sci. 18 (9): 867-872.
254. Ding K, et al. (2015) Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem. Int. 91:.46-54.
255. Kelestemur T, et al. (2016) Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine. Neurosci.Lett. 612: 92-97.
256. Lin C, et al. (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J. Pineal Res. 61 (2): 177-186.
257. Wu H, et al. (2016) Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats. J. Pineal Res. 61 (2): 241-250.
258. Dehghan F, et al. (2018) Does the administration of melatonin during post-traumatic brain injury affect cytokine levels? Inflammopharmacology 26 (4): 1017-1023.
259. Grima NA, et al. (2018) Efficacy of melatonin for sleep disturbance following traumatic brain injury: a randomised controlled trial. BMC Med. 16 (1): 8.
260. Rehman SU, et al. (2019) Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8 (7): 760
261. Salman M, Kaushik P, Tabassum H, Parvez S (2021) Melatonin provides neuroprotection following traumatic brain injury-promoted mitochondrial perturbation in Wistar rat. Cell. Mol. Neurobiol. 41 (4): 765-781.
262. Rui T, et al. (2021) Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J. Pineal Res. 70 (2):e12704.
263. Ge J, et al. (2020) Effect of melatonin on regeneration of cortical neurons in rats with traumatic brain injury. Clinical and investigative medicine. Med. Clin. Exp. 43 (4): E8-16.
264. Li SS, et al. (2021) Androgen is responsible for enhanced susceptibility of melatonin against traumatic brain injury in females. Neurosci. Lett. 752: 135842.
265. Cao R, et al. (2021) Melatonin attenuates repeated mild traumatic brain injury-induced cognitive deficits by inhibiting astrocyte reactivation. Biochemical and biophysical research communications Biochem. Biophys. Res. Commun. 580: 20-27.
266. Wu C, et al. (2022) A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury. Free Radic. Biol. Med. 178: 271-294.
267. Xie LL, Li SS, Fan YJ, Qi MM, Li ZZ (2022) Melatonin alleviates traumatic brain injury-induced anxiety-like behaviors in rats: Roles of the protein kinase A/cAMP-response element binding signaling pathway. Exp.Ther. Med. 23 (4): 248.
268. Xie LL, et al. (2022) Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats. Neurosci. Lett. 784: 136754.
269. Fu J, et al. (2022) Protective effects and regulatory pathways of melatonin in traumatic brain injury mice model: Transcriptomics and bioinformatics analysis. Front. Mol. Neurosci.15: 974060.
270. Paul R, et al. (2018) Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson's disease. Life Sci. 192: 238-245.
271. Rasheed MZ, et al. (2018) Melatonin improves behavioral and biochemical outcomes in a rotenone-induced rat model of Parkinson's disease. J. Environ. Pathol. Toxicol. Oncol. 37 (2): 139-150.
272. Ran D, et al. (2018) Melatonin attenuates hLRRK2-induced long-term memory deficit in a Drosophila model of Parkinson's disease. Biomedical reports 9(3):221-226.
273. Daneshvar Kakhaki R, et al. (2020) Melatonin supplementation and the effects on clinical and metabolic status in Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg. 195: 105878.
274. Delgado-Lara DL, et al. (2020) Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson's disease. Biomed. Pharmacother. 129: 110485.
275. Zheng R, et al. (2021) Melatonin attenuates neuroinflammation by down-regulating NLRP3 inflammasome via a SIRT1-dependent pathway in MPTP-induced models of Parkinson's disease. J. Inflamm. Res. 14: 3063-3075.
276. Jiménez-Delgado A, et al. (2021) Effect of melatonin administration on mitochondrial activity and oxidative stress markers in patients with Parkinson's disease. Oxid. Med. Cell. Longev. 2021: 5577541.
277. Jung YJ, Choi H, & Oh E (2022) Melatonin attenuates MPP(+)-induced apoptosis via heat shock protein in a Parkinson's disease model. Biochem. Biophys. Res. Commun. 621: 59-66.
278. Asemi-Rad A, et al. (2022) The effect of dopaminergic neuron transplantation and melatonin co-administration on oxidative stress-induced cell death in Parkinson's disease. Metab. Brain Dis. 37 (8): 2677-2685.
279. Luengo E, et al. (2019) Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J.Pineal Res. 67 (1): e12578.
280. Chen D, et al. (2020) Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer's disease. J. Pineal Res. 69 (2): e12665.
281. Wang P, et al. (2021) Melatonin ameliorates microvessel abnormalities in the cerebral cortex and hippocampus in a rat model of Alzheimer's disease. Neural Regen. Res. 16 (4): 757-764.
282. Labban S, Alshehri FS, Kurdi M, Alatawi Y, Alghamdi BS (2021) Melatonin improves short-term spatial memory in a mouse model of alzheimer's disease. Degener. Neurol. Neuromuscul. Dis. 11: 15-27.
283. Chen D, et al. (2022) Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer's disease. Transl. Neurodegener. 11 (1): 27.
284. Fan L, et al. (2022) Melatonin ameliorates the progression of alzheimer's disease by inducing TFEB nuclear translocation, promoting mitophagy, and regulating NLRP3 inflammasome activity. Biomed. Res. Int. 2022: 8099459.
285. Chen C, et al. (2021) Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease. J. Pineal Res. 71 (4): e12774.
286. Li LB, et al. (2022) Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer's disease. Bioorg. Chem. 128: 106100.
287. Özşimşek A, Övey İ S (2022) Potential effects of melatonin on trpa1 channels in the prevention and treatment of alzheimer's disease. Noro Psikiyatr. Ars. 59 (3):188-192.
288. Rudnitskaya EA, et al. (2015) Melatonin Attenuates Memory Impairment, Amyloid-β Accumulation, and Neurodegeneration in a Rat Model of Sporadic Alzheimer's Disease. J. Alzheimers Dis. 47 (1): 103-116.
289. Li Y, et al. (2019) Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem. Res. 44 (8):2007-2019.
290. Jing Y, et al. (2019) Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice. J. Neurotrauma 36(18):2646-2664.
291. Xu G, Shi D, Zhi Z, Ao R, Yu B (2019) Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. J. Cell. Biochem. 120 (4):5183-5192.
292. Shen Z, et al. (2017) Melatonin inhibits neural cell apoptosis and promotes locomotor recovery via activation of the Wnt/β-catenin signaling pathway after spinal cord injury. Neurochem. Res. 42 (8):2336-2343.
293. Jing Y, Bai F, Chen H, Dong H (2016) Meliorating microcirculatory with melatonin in rat model of spinal cord injury using laser Doppler flowmetry. Neuroreport 27 (17):1248-1255.
294. Krityakiarana W, et al. (2016) Effects of melatonin on severe crush spinal cord injury-induced reactive astrocyte and scar formation. J. Neurosci. Res. 94 (12): 1451-1459.
295. Jing Y, Bai F, Chen H, Dong H (2017) Melatonin prevents blood vessel loss and neurological impairment induced by spinal cord injury in rats. J. Spinal Cord Med. 40 (2):222-229.
296. Paterniti I, et al. (2017) PPAR-α modulates the anti-inflammatory effect of melatonin in the secondary events of spinal cord injury. Mol. Neurobiol. 54 (8): 5973-5987.
297. Yuan XC, et al. (2017) Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis. Andrologia 49 (7): e12692.
298. Wang H, et al. (2022) Melatonin attenuates spinal cord injury in mice by activating the Nrf2/ARE signaling pathway to inhibit the NLRP3 inflammasome. Cells 11 (18).
299. Bi J, et al. (2021) Melatonin synergizes with methylprednisolone to ameliorate acute spinal cord injury. Front. Pharmacol. 12: 723913.
300. Gao K, Niu J, Dang X (2020) Neuroprotection of melatonin on spinal cord injury by activating autophagy and inhibiting apoptosis via SIRT1/AMPK signaling pathway. Biotechnol. Lett. 42 (10): 2059-2069.
301. Yang Z, Bao Y, Chen W, He Y (2020) Melatonin exerts neuroprotective effects by attenuating astro- and microgliosis and suppressing inflammatory response following spinal cord injury. Neuropeptides 79: 102002.
This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in Melatonin Res., copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.
In exceptional circumstances articles may be licensed differently. If you have specific condition (such as one linked to funding) that does not allow this license, please mention this to the editorial office of the journal at submission. Exceptions will be granted at the discretion of the publisher.