Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection?

Melatonin dose in clinical practice

  • Daniel Pedro Cardinali Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
Keywords: aging; Alzheimer’s disease; cytoprotection; inflammation; melatonin; metabolic syndrome; mild cognitive impairment; neurodegeneration; off-label use; oxidative stress.

Abstract

This review article discusses the special role that melatonin, a molecule with chronobiotic/cytoprotective properties, may have in prevention and treatment of the metabolic syndrome (MS), ischemic and non-ischemic cardiovascular diseases and Alzheimer´s disease (AD). Prevention of these diseases is a major goal for governmental and non-governmental organizations, and melatonin, an unusual phylogenetically conserved molecule present in all aerobic organisms, merits consideration in this respect. In humans, circulating melatonin levels are consistently reduced in MS, ischemic and non-ischemic cardiovascular diseases and AD, the potential therapeutic value of melatonin being suggested by a limited number of clinical trials generally employing melatonin in the 2-5 mg/day range. In animal model studies of MS, ischemic and non-ischemic cardiovascular diseases and AD melatonin was very effective to curtail symptomatology. However, calculations derived from animal studies indicate projected cytoprotective melatonin doses for humans in the 40-100 mg/day range, doses that are rarely employed clinically. Hence, controlled studies employing melatonin doses in this range are urgently needed. Since the pharmaceutical industry is refractive to support them because of the lack of protective patents for a natural compound, only the involvement of governmental and non-profit organizations can achieve that goal. Within this prospect, the off-label use of melatonin is discussed.

 




References

1. Smith CJ, Ryckman KK (2015) Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab. Syndr. Obes. 8: 295-302.
2. O'Neill S, O'Driscoll L (2015) Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes. Rev. 16: 1-12. doi.org/10.1111/obr.12229.
3. Jeong S (2017) Molecular and cellular basis of neurodegeneration in alzheimer's disease. Mol. Cells 40: 613-620. https://doi.org/10.14348/molcells.2017.0096.
4. Tan SH, et al. (2019) Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer's disease, Parkinson's disease. Biomed. Pharmacother. 111: 765-777. https://doi.org/10.1016/j.biopha.2018.12.101.
5. Prince M, et al. (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers. Dement. 9: 63-75. https://doi.org/10.1016/j.jalz.2012.11.007.
6. Ferri CP, et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366: 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0.
7. Davies JMS et al. (2017) The Oxygen Paradox, the French Paradox, and age-related diseases. Geroscience. 39: 499-550. https://doi.org/10.1007/s11357-017-0002-y.
8. Tan DX, et al. (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int. J. Mol. Sci. 15: 15858-15890. https://doi.org/10.3390/ijms150915858.
9. Claustrat B, Leston J (2015) Melatonin: Physiological effects in humans. Neurochirurgie 61: 77-84. https://doi.org/10.1016/j.neuchi.2015.03.002.
10. Cardinali DP, Cano P, Jimenez-Ortega V, Esquifino AI (2011) Melatonin and the metabolic syndrome: physiopathologic and therapeutical implications. Neuroendocrinology 93: 133-142. https://doi.org/10.1159/000324699.
11. Cardinali DP, Hardeland R (2017) Inflammaging, metabolic syndrome and melatonin: a call for treatment studies. Neuroendocrinology 104: 382-397. https://doi.org/10.1159/000446543.
12. Tan DX, et al. (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20: 18886-18906. https://doi.org/10.3390/molecules201018886.
13. Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog. Neurobiol. 127-128: 46-63. https://doi.org/10.1016/j.pneurobio.2015.02.001.
14. Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A (2017) Melatonin and human mitochondrial diseases. J. Res. Med. Sci. 22: 2. https://doi.org/10.4103/1735-1995.199092.
15. Cardinali DP (1981) Melatonin: A mammalian pineal hormone. Endocr. Rev. 2: 327-346.
16. Lavie P (1997) Melatonin: role in gating nocturnal rise in sleep propensity. J. Biol. Rhythms 12: 657-665.
17. Lewy AJ, Emens J, Jackman A , Yuhas K (2006) Circadian uses of melatonin in humans. Chronobiol. Int. 23: 403-412. https://doi.org/10.1080/07420520500545862.
18. Pandi-Perumal SR, et al. (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 185: 335-353. https://doi.org/10.1016/j.pneurobio.2008.04.001.
19. Acuña-Castroviejo D, et al. (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol. Life Sci. 71: 2997-3025. https://doi.org/10.1007/s00018-014-1579-2.
20. Reiter RJ, et al. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol. Life Sci. 74: 3863-3881. https://doi.org/10.1007/s00018-017-2609-7.
21. Tan DX , Reiter RJ (2019) Mitochondria: the birth place, the battle ground and the site of melatonin metabolism. Melatonin Research 2: 44-66. https://doi.org/10.32794/mr11250011.
22. Hardeland R, et al. (2011) Melatonin--a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93: 350-384.
23. Dubocovich ML, et al. (2010) International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 62: 343-380.
24. Cecon E, Oishi A, Jockers R (2017) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 175: 3263-3280. https://doi.org/10.1111/bph.13950.
25. Benitez-King G (2006) Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J. Pineal Res. 40: 1-9.
26. Hardeland R (2018) Recent findings in melatonin research and their relevance to the CNS. Cent. Nerv. Syst. Agents Med. Chem. 18: 102-114.
27. Venegas C, et al. (2013) Analysis of the daily changes of melatonin receptors in the rat liver. J. Pineal Res. 54: 313-321.
28. Reiter RJ, et al. (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int. J. Mol. Sci. 19. pii: E2439. https://doi.org/10.3390/ijms19082439.
29. Manchester LC, et al. (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59: 403-419. https://doi.org/10.1111/jpi.12267.
30. Galano A, Tan DX , Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51: 1-16. https://doi.org/10.1111/j.1600-079X.2011.00916.x.
31. Carrillo-Vico A, et al. (2013) Melatonin: buffering the immune system. Int. J. Mol. Sci. 14: 8638-8683. https://doi.org/10.1111/j.1600-079X.2011.00909.x.
32. Hardeland R (2018) Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res. 65: e12525. https://doi.org/10.1111/jpi.12525.
33. Cardinali DP, et al. (1980) Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations. Eur. J. Pharmacol. 67: 151-153.
34. Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108: 518-524.
35. Costantino G, Cuzzocrea S, Mazzon E, Caputi AP (1998) Protective effects of melatonin in zymosan-activated plasma-induced paw inflammation. Eur. J. Pharmacol. 363: 57-63.
36. Pan M, Song YL, Xu JM, Gan HZ (2006) Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J. Pineal Res. 41: 79-84. https://doi.org/10.1111/j.1600-079X.2006.00346.x
37. Stumpf I, Bazwinsky I, Peschke E (2009) Modulation of the cGMP signaling pathway by melatonin in pancreatic beta-cells. J. Pineal Res. 46: 140-147. https://doi.org/10.1111/j.1600-079X.2008.00638.x.
38. Kanter M, Uysal H, Karaca T, Sagmanligil HO (2006) Depression of glucose levels and partial restoration of pancreatic beta-cell damage by melatonin in streptozotocin-induced diabetic rats. Arch. Toxicol. 80: 362-369. https://doi.org/10.1007/s00204-005-0055-z.
39. Nishida S, Sato R, Murai I, Nakagawa S (2003) Effect of pinealectomy on plasma levels of insulin and leptin and on hepatic lipids in type 2 diabetic rats. J. Pineal Res. 35: 251-256.
40. Nishida S, Segawa T, Murai I, Nakagawa S (2002) Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J. Pineal Res. 32: 26-33.
41. Mazepa RC, Cuevas MJ, Collado PS, Gonzalez-Gallego J (2000) Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 66: 153-160.
42. Shieh JM, Wu HT, Cheng KC, Cheng JT (2009) Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells. J. Pineal Res. 47: 339-344. https://doi.org/10.1007/s00204-005-0055-z.
43. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J. 22: 659-661. https://doi.org/10.1096/fj.07-9574LSF.
44. Prunet-Marcassus B, et al. (2003) Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 144: 5347-5352.
45. Sartori C, et al. (2009) Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 150: 5311-5317. https://doi.org/10.1210/en.2009-0425.
46. Ladizesky MG, et al. (2003) Melatonin increases oestradiol-induced bone formation in ovariectomized rats. J. Pineal Res. 34: 143-151.
47. Sanchez-Mateos S, et al. (2007) Melatonin and estradiol effects on food intake, body weight, and leptin in ovariectomized rats. Maturitas 58: 91-101. https://doi.org/10.1016/j.maturitas.2007.06.006.
48. Ciortea R, et al. (2011) Effect of melatonin on intra-abdominal fat in correlation with endometrial proliferation in ovariectomized rats. Anticancer Res. 31: 2637-2643.
49. Raskind MA, et al. (2007) Olanzapine-induced weight gain and increased visceral adiposity is blocked by melatonin replacement therapy in rats. Neuropsychopharmacology 32: 284-288. https://doi.org/10.1038/sj.npp.1301093.
50. She M, et al. (2009) NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacol. Res. 59: 248-253.
51. Rios-Lugo MJ, et al. (2010) Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J. Pineal Res. 49: 342-348. https://doi.org/10.1111/j.1600-079X.2010.00798.x.
52. Cuesta S, et al. (2010) Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8). Exp. Gerontol. 45: 950-956. https://doi.org/10.1016/j.exger.2010.08.016.
53. Cuesta S, et al. (2013) Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8). Age (Dordr. ) 35: 659-671. https://doi.org/10.1007/s11357-012-9397-7.
54. Rodriguez MI, et al. (2008) Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp. Gerontol. 43: 749-756. https://doi.org/10.1016/j.exger.2008.04.003.
55. Nduhirabandi F, et al. (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J. Pineal Res. 50: 171-182. https://doi.org/10.1111/j.1600-079X.2010.00826.x.
56. Agil A, et al. (2011) Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J. Pineal Res. 50: 207-212. https://doi.org/10.1111/j.1600-079X.2010.00830.x.
57. Kitagawa A, Ohta Y, Ohashi K (2012) Melatonin improves metabolic syndrome induced by high fructose intake in rats. J. Pineal Res. 52: 403-413. https://doi.org/10.1111/j.1600-079X.2011.00955.x.
58. Cardinali DP, et al. (2013) Melatonin may curtail the metabolic syndrome: studies on initial and fully established fructose-induced metabolic syndrome in rats. Int. J. Mol. Sci. 14: 2502-2514. https://doi.org/10.3390/ijms14022502.
59. Bernasconi PA, et al. (2013) Melatonin and diet-induced metabolic syndrome in rats: impact on the hypophysial-testicular axis. Horm. Mol. Biol. Clin. Investig. 16: 101-112. https://doi.org/10.1515/hmbci-2013-0005.
60. Demirtas CY, et al. (2015) The investigation of melatonin effect on liver antioxidant and oxidant levels in fructose-mediated metabolic syndrome model. Eur. Rev. Med. Pharmacol. Sci. 19: 1915-1921.
61. Ewida SF, Al-Sharaky DR (2016) Implication of renal aquaporin-3 in fructose-induced metabolic syndrome and melatonin protection. J. Clin. Diagn. Res. 10: CF06-CF11. https://doi.org/10.7860/JCDR/2016/18362.7656.
62. Huang L, et al. (2013) Blood pressure reducing effects of piromelatine and melatonin in spontaneously hypertensive rats. Eur. Rev. Med. Pharmacol. Sci. 17: 2449-2456.
63. Vinogradova I, Anisimov V (2013) Melatonin prevents the development of the metabolic syndrome in male rats exposed to different light/dark regimens. Biogerontology. 14: 401-409. https://doi.org/10.1007/s10522-013-9437-4.
64. Hatzis G, et al. (2013) Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J. Hepatol. 5: 160-169. https://doi.org/10.4254/wjh.v5.i4.160.
65. Agil A, et al. (2013) Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats. J. Pineal Res. 54: 381-388. https://doi.org/10.1111/jpi.12012.
66. Bibak B, et al. (2014) Effects of melatonin on biochemical factors and food and water consumption in diabetic rats. Adv. Biomed. Res. 3: 173. https://doi.org/10.4103/2277-9175.139191.
67. Hidayat M, Maha Y, Wasim H (2015) Effect of melatonin on serum glucose and body weight in sotreptozotocin induced diabetes in albino rats. J. Ayub. Med. Coll. Abbottabad. 27: 274-276.
68. Pai SA, Majumdar AS (2014) Protective effects of melatonin against metabolic and reproductive disturbances in polycystic ovary syndrome in rats. J. Pharm. Pharmacol. 66: 1710-1721. https://doi.org/10.1111/jphp.12297.
69. Cano BP, et al. (2014) Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats. J. Pineal Res. 57: 280-290. https://doi.org/10.1111/jpi.12168.
70. Rios-Lugo MJ, et al. (2015) Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Horm. Mol. Biol. Clin. Investig. 21: 175-183. https://doi.org/10.1515/hmbci-2014-0041.
71. Favero G, et al. (2015) Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr. Res. 35: 891-900. https://doi.org/10.1016/j.nutres.2015.07.001.
72. Winiarska K, et al. (2016) Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J. Pineal Res. 60: 109-117 https://doi.org/10.1111/jpi.12296.
73. Doddigarla Z, Ahmad J, Parwez I (2016) Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet-fed male Wistar rats. Biofactors 42: 106-114. https://doi.org/10.1002/biof.1253.
74. Salmanoglu DS, et al. (2016) Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats. Redox. Biol. 8: 199-204. https://doi.org/10.1016/j.redox.2015.11.007.
75. Gao L, et al. (2016) The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J. Pineal Res. 61: 340-352. https://doi.org/10.1111/jpi.12351.
76. Thomas AP, et al. (2016) Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology 157: 4720-4731. https://doi.org/10.1210/en.2016-1309.
77. Sun H, et al. (2016) Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids Health Dis. 15: 202. https://doi.org/10.1186/s12944-016-0370-9.
78. Sheen JM, et al. (2016) Melatonin alleviates liver apoptosis in bile duct ligation young rats. Int. J. Mol. Sci. 17: pii: E1365. https://doi.org/10.3390/ijms17081365.
79. Xu P, et al. (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pineal Res. 62: e12399. https://doi.org/10.1111/jpi.12399.
80. Zhou J, et al. (2017) Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur. J. Pharmacol. 812: 225-233. https://doi.org/10.1016/j.ejphar.2017.07.001.
81. Han L, et al. (2017) Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway. J. Pineal Res. 63: e12431. https://doi.org/10.1111/jpi.12431.
82. Djordjevic B, et al. (2018) Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. Eur. J. Pharmacol. 833: 290-297. https://doi.org/10.1016/j.ejphar.2018.06.011.
83. Onk D, et al. (2018) Effect of melatonin on antioxidant capacity, inflammation and apoptotic cell death in lung tissue of diabetic rats. Acta Cir. Bras. 33: 375-385. https://doi.org/10.1590/s0102-865020180040000009.
84. Kadry SM, et al. (2018) Melatonin improves the therapeutic role of mesenchymal stem cells in diabetic rats. Toxicol. Mech. Methods 28: 529-538. https://doi.org/10.1080/15376516.2018.1471634.
85. Heo JI, et al. (2018) Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein. J. Pineal Res. 65: e12493. https://doi.org/10.1111/jpi.12493.
86. Mehrzadi S, et al. (2018) Protective effect of melatonin in the diabetic rat retina. Fundam. Clin. Pharmacol. 32: 414-421. https://doi.org/10.1111/fcp.12361.
87. Bartness TJ, Demas GE, Song CK (2002) Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp. Biol. Med. (Maywood. ) 227: 363-376.
88. Tan DX, et al. (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes. Rev. 12: 167-188. https://doi.org/10.1111/j.1467-789X.2010.00756.x.
89. de Souza CAP, et al. (2018) Melatonin multiple effects on brown adipose tissue molecular machinery. J. Pineal Res. 66: e12549. https://doi.org/10.1111/jpi.12549.
90. Fernandez VG, Reiter RJ, Agil A. (2018) Melatonin increases brown adipose tissue mass and function in Zucker diabetic fatty rats: implications for obesity control. J. Pineal Res. 64: e12472. https://doi.org/10.1111/jpi.12472.
91. Halpern B, et al. (2019) Melatonin Increases brown adipose tissue volume and activity in patients with melatonin deficiency: a proof-of-concept study. Diabetes 68: 947-952. https://doi.org/10.2337/db18-0956.
92. Castagnino HE, et al. (2002) Cytoprotection by melatonin and growth hormone in early rat myocardial infarction as revealed by Feulgen DNA staining. Neuro. Endocrinol. Lett. 23: 391-395.
93. Patel V, Upaganlawar A, Zalawadia R, Balaraman R (2010) Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. Eur. J. Pharmacol. 644: 160-168. https://doi.org/10.1016/j.ejphar.2010.06.065.
94. Hung MW, et al. (2013) Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J. Pineal Res. 55: 247-256. https://doi.org/10.1111/jpi.12067.
95. Sehirli AO, et al. (2013) Melatonin protects against ischemic heart failure in rats. J. Pineal Res. 55: 138-148. https://doi.org/10.1111/jpi.12054.
96. Jin H, et al. (2014) Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J. Pineal Res. 57: 442-450. https://doi.org/10.1111/jpi.12184.
97. Simko F, et al. (2014) Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 57: 177-184. https://doi.org/10.1111/jpi.12154.
98. Maarman G, et al. (2015) Melatonin as a preventive and curative therapy against pulmonary hypertension. J. Pineal Res. 59: 343-353. https://doi.org/10.1111/jpi.12263.
99. Zhu P, et al. (2015) Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction. J. Cell Mol. Med. 19: 2232-2243. https://doi.org/10.1111/jcmm.12610.
100. Hu J, et al. (2017) Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J. Pineal Res. 62: e12368. https://doi.org/10.1111/jpi.12368.
101. Pei H, et al. (2016) Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic. Biol. Med. 97: 408-417. https://doi.org/10.1016/j.freeradbiomed.2016.06.015.
102. Zhai M, et al. (2017) Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1beta: In vivo and in vitro studies. J. Pineal Res. 63: e12433. https://doi.org/10.1111/jpi.12433
103. Behram KY, et al. (2018) Melatonin protects against streptozotocin-induced diabetic cardiomyopathy by the phosphorylation of vascular endothelial growth factor-A (VEGF-A). Cell Mol. Biol. (Noisy. -le-grand) 64: 47-52.
104. Govender J, Loos B, Marais E, Engelbrecht AM (2018) Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol. Appl. Pharmacol. 358: 86-101. https://doi.org/10.1016/j.taap.2018.06.031.
105. Ma W, et al. (2018) Pre-treatment with melatonin enhances therapeutic efficacy of cardiac progenitor cells for myocardial infarction. Cell Physiol. Biochem. 47: 1287-1298. https://doi.org/10.1159/000490224.
106. Simko F, et al. (2014) Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 57: 177-184. https://doi.org/10.1111/jpi.12154.
107. Pei HF, et al. (2017) Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J. Pineal Res. 62: e12371. https://doi.org/10.1111/jpi.12371.
108. Chen WR, et al. (2018) Melatonin attenuates myocardial ischemia/reperfusion injury by inhibiting autophagy via an AMPK/mTOR signaling pathway. Cell Physiol. Biochem. 47: 2067-2076. https://doi.org/10.1159/000491474.
109. Liu Y, et al. (2018) Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox. Biol. 18: 211-221. https://doi.org/10.1016/j.redox.2018.07.007.
110. Sang Y, et al. (2018) Melatonin ameliorates Coxsackievirus B3-induced myocarditis by regulating apoptosis and autophagy. Front Pharmacol. 9: 1384. https://doi.org/10.3389/fphar.2018.01384.
111. Wang S, et al. (2018) Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J. Cell Mol. Med. 22: 5132-5144. https://doi.org/10.1111/jcmm.13802.
112. Wu Y, et al. (2018) The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs. Korean J. Physiol. Pharmacol. 22: 607-616. https://doi.org/10.4196/kjpp.2018.22.6.607.
113. Yang Z, et al. (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J. Mol. Cell Cardiol. 125: 185-194. https://doi.org/10.1016/j.yjmcc.2018.10.018.
114. Zhang Y, et al. (2018) Melatonin attenuates myocardial ischemia reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res. 66: e12542. https://doi.org/10.1111/jpi.12542.
115. Acuña-Castroviejo D, Noguera-Navarro MT, Reiter RJ, Escames G (2018) Melatonin actions in the heart: more than a hormone. Melatonin Res 1: 21-26. Https://doi.org/10.32794/mr11250002.
116. Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ (2019) The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann. NY. Acad. Sci. 1443: 75-96. https://doi.org/10.1111/nyas.14005.
117. Matsubara E, et al. (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J. Neurochem. 85: 1101-1108.
118. Feng Z, et al. (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J. Pineal Res. 37: 129-136. https://doi.org/10.1111/j.1600-079X.2004.00144.x.
119. Quinn J, et al. (2005) Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res. 1037: 209-213. https://doi.org/10.1016/j.brainres.2005.01.023.
120. Feng Z, Qin C, Chang Y, Zhang JT (2006) Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radic. Biol. Med. 40: 101-109. https://doi.org/10.1016/j.freeradbiomed.2005.08.014.
121. Garcia T, et al. (2009) Evaluation of the protective role of melatonin on the behavioral effects of aluminum in a mouse model of Alzheimer's disease. Toxicology 265: 49-55. https://doi.org/10.1016/j.tox.2009.09.009.
122. Olcese JM, et al. (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 47: 82-96. https://doi.org/10.1111/j.1600-079X.2009.00692.x.
123. Garcia T, et al. (2010) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer's disease after chronic exposure to aluminum. Hippocampus 20: 218-225. https://doi.org/10.1002/hipo.20612.
124. Bedrosian TA, Herring KL, Weil ZM, Nelson RJ (2011) Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice. Proc. Natl. Acad. Sci. USA 108: 11686-11691. https://doi.org/10.1073/pnas.1103098108.
125. Dragicevic N, et al. (2011) Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. J. Pineal Res. 51: 75-86. https://doi.org/10.1111/j.1600-079X.2011.00864.x.
126. Baño OB, et al. (2012) Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon. Chronobiol. Int. 29: 822-834. https://doi.org/10.3109/07420528.2012.699119.
127. Dragicevic N, et al. (2012) Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer's mice and cells. Neuropharmacology 63: 1368-1379. https://doi.org/10.1016/j.neuropharm.2012.08.018
128. Garcia-Mesa Y, et al. (2012) Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol. Aging 33: 1124-1129.
129. Di Paolo C, et al. (2014) Chronic exposure to aluminum and melatonin through the diet: neurobehavioral effects in a transgenic mouse model of Alzheimer disease. Food Chem. Toxicol. 69: 320-329. https://doi.org/10.1016/j.fct.2014.04.022.
130. Gerenu G, et al. (2015) Curcumin/melatonin hybrid 5-(4-hydroxy-phenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide ameliorates AD-like pathology in the APP/PS1 mouse model. ACS Chem. Neurosci. 6: 1393-1399. https://doi.org/10.1021/acschemneuro.5b00082.
131. Nie L, et al. (2017) Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease. Biofactors 43: 593-611. https://doi.org/10.1002/biof.1369.
132. Pappolla MA, et al. (2018) Melatonin Treatment Enhances Abeta Lymphatic Clearance in a Transgenic Mouse Model of Amyloidosis. Curr. Alzheimer Res. 15: 637-642. https://doi.org/10.2174/1567205015666180411092551.
133. Poeggeler B, et al. (2001) Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry 40: 14995-15001.
134. Pappolla M, et al. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273, 7185-7188.
135. Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J. Pineal Res. 35: 98-103.
136. Feng Z, Zhang JT (2004) Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic. Biol. Med. 37: 1790-1801.
137. Furio AM, et al. (2002) Effect of melatonin on changes in locomotor activity rhythm of Syrian hamsters injected with beta amyloid peptide 25-35 in the suprachiasmatic nuclei. Cell Mol. Neurobiol. 22: 699-709.
138. Shen YX, et al. (2002) Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25-35. J. Pineal Res. 32: 163-167.
139. Rosales-Corral S, et al. (2003) Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J. Pineal Res. 35: 80-84.
140. Deng YQ, et al. (2005) Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol. Sin. 26: 519-526.
141. Li SP, et al. (2004) Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J. Pineal Res. 36: 186-191.
142. Xiong YF, et al. (2011) Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A. J. Pineal Res. 50: 319-327.
143. Benitez-King G, et al. (2003) Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp. Neurol. 182: 151-159.
144. Tunez I, et al. (2003) Protective melatonin effect on oxidative stress induced by okadaic acid into rat brain. J. Pineal Res. 34: 265-268.
145. Wang YP, et al. (2004) Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol. Sin. 25: 276-280.
146. Liu SJ, Wang JZ (2002) Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol. Sin. 23: 183-187.
147. Wang XC, et al. (2005) Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Sheng Li Xue Bao 57: 7-12.
148. Monti JM, et al. (1999) Polysomnographic study of the effect of melatonin on sleep in elderly patients with chronic primary insomnia. Arch. Gerontol. Geriatr. 28: 85-98.
149. Boespflug EL, Iliff JJ (2018) The emerging relationship between interstitial fluid-cerebrospinal fluid exchange, amyloid-beta, and sleep. Biol. Psychiatry 83: 328-336. https://doi.org/10.1016/j.biopsych.2017.11.031.
150. Plog BA , Nedergaard M (2018) The glymphatic system in Central Nervous System health and disease: past, present, and future. Annu. Rev. Pathol. 13: 379-394. https://doi.org/10.1146/annurev-pathol-051217-111018.
151. Tutuncu NB, et al. (2005) Melatonin levels decrease in type 2 diabetic patients with cardiac autonomic neuropathy. J. Pineal Res. 39: 43-49.
152. Peschke E, et al. (2007) Melatonin and type 2 diabetes - a possible link? J. Pineal Res. 42: 350-358. https://doi.org/10.1111/j.1600-079X.2007.00426.x.
153. Prokopenko I, et al. (2009) Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41: 77-81. https://doi.org/10.1038/ng.290.
154. Huber M, et al. (2013) Genetics of melatonin receptor type 2 is associated with left ventricular function in hypertensive patients treated according to guidelines. Eur. J. Intern. Med. 24: 650-655. https://doi.org/10.1016/j.ejim.2013.03.015.
155. Zheng C, et al. (2015) A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity (Silver. Spring) 23: 1022-1029. https://doi.org/10.1002/oby.21030.
156. Song X, et al. (2015) Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome in Han Chinese. Eur. J. Obstet. Gynecol. Reprod. Biol. 195: 108-112. https://doi.org/10.1016/j.ejogrb.2015.09.043.
157. Sakotnik A, et al. (1999) Decreased melatonin synthesis in patients with coronary artery disease. Eur. Heart J. 20: 1314-1317.
158. Girotti L, et al. (2000) Low urinary 6-sulphatoxymelatonin levels in patients with coronary artery disease. J. Pineal Res. 29: 138-142.
159. Dominguez-Rodriguez A, et al. (2002) Decreased nocturnal melatonin levels during acute myocardial infarction. J. Pineal Res. 33: 248-252.
160. Yaprak M, et al. (2003) Decreased nocturnal synthesis of melatonin in patients with coronary artery disease. Int. J. Cardiol. 89: 103-107.
161. Obayashi K, et al. (2013) Nocturnal urinary melatonin excretion is associated with non-dipper pattern in elderly hypertensives. Hypertens. Res. 36: 736-740. https://doi.org/10.1038/hr.2013.20.
162. Cagnacci A, et al. (2005) Prolonged melatonin administration decreases nocturnal blood pressure in women. Am. J. Hypertens. 18: 1614-1618.
163. Scheer FA, et al. (2004) Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 43: 192-197.
164. Grossman E, et al. (2006) Melatonin reduces night blood pressure in patients with nocturnal hypertension. Am. J. Med. 119: 898-902.
165. Mozdzan M, et al. (2014) The effect of melatonin on circadian blood pressure in patients with type 2 diabetes and essential hypertension. Arch. Med. Sci. 10: 669-675. https://doi.org/10.5114/aoms.2014.44858.
166. Gubin DG, Gubin GD, Gapon LI, Weinert D (2016) Daily melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms. Curr. Aging Sci. 9: 5-13.
167. Kozirog M, et al. (2011) Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res. 50: 261-266. https://doi.org/10.1111/j.1600-079X.2010.00835.x.
168. Goyal A, et al. (2014) Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Diabetol. Metab. Syndr. 6: 124. https://doi.org/10.1186/1758-5996-6-124.
169. Tagliaferri V, et al. (2018) Melatonin treatment may be able to restore menstrual cyclicity in women with PCOS: a pilot study. Reprod. Sci. 25: 269-275. https://doi.org/10.1177/1933719117711262.
170. Romo-Nava F, et al. (2014) Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. Bipolar. Disord. 16: 410-421. https://doi.org/10.1111/bdi.12196.
171. Modabbernia A, et al. (2014) Melatonin for prevention of metabolic side-effects of olanzapine in patients with first-episode schizophrenia: randomized double-blind placebo-controlled study. J. Psychiatr. Res. 53: 133-140. https://doi.org/10.1016/j.jpsychires.2014.02.013.
172. Mostafavi A, et al. (2014) Melatonin decreases olanzapine induced metabolic side-effects in adolescents with bipolar disorder: a randomized double-blind placebo-controlled trial. Acta Med. Iran 52: 734-739.
173. Shatilo VB, Bondarenko EV, Antoniuk-Shcheglova IA (2010) Pineal gland melatonin-producing function in elderly patients with hypertensive disease: age peculiarities. Adv. Gerontol. 23, 539-542.
174. Gonciarz M, et al. (2012) The effects of long-term melatonin treatment on plasma liver enzymes levels and plasma concentrations of lipids and melatonin in patients with nonalcoholic steatohepatitis: a pilot study. J. Physiol. Pharmacol. 63: 35-40.
175. Gonciarz M, et al. (2010) The pilot study of 3-month course of melatonin treatment of patients with nonalcoholic steatohepatitis: effect on plasma levels of liver enzymes, lipids and melatonin. J. Physiol. Pharmacol. 61: 705-710.
176. Hussain SA, et al. (2006) Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin. Saudi. Med. J. 27: 1483-1488.
177. McMullan CJ, Curhan GC, Schernhammer ES , Forman JP (2013) Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women. Am. J. Epidemiol. 178: 231-238. https://doi.org/10.1093/aje/kws470.
178. Rubio-Sastre P, et al. (2014) Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep 37: 1715-1719. https://doi.org/10.5665/sleep.4088.
179. Eckel RH, et al. (2015) Morning circadian misalignment during short sleep duration impacts insulin sensitivity. Curr. Biol. 25: 3004-3010. https://doi.org/10.1016/j.cub.2015.10.011.
180. Matuszek MA, Anton A, Thillainathan S , Armstrong NJ (2015) Increased insulin following an oral glucose load, genetic variation near the melatonin receptor MTNR1B, but no biochemical evidence of endothelial dysfunction in young Asian men and women. PLoS One 10: e0133611. https://doi.org/10.1371/journal.pone.0133611.
181. Zhan Y, et al. (2015) Association between the rs4753426 polymorphism in MTNR1B with fasting plasma glucose level and pancreatic beta-cell function in gestational diabetes mellitus. Genet. Mol. Res. 14: 8778-8785. https://doi.org/10.4238/2015.
182. Tarnowski M, et al. (2017) MTNR1A and MTNR1B gene polymorphisms in women with gestational diabetes. Gynecol. Endocrinol. 5: 395-398. https://doi.org/10.1080/09513590.2016.1276556.
183. Dupuis J, et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42: 105-116. https://doi.org/10.1038/ng.520.
184. Liao S, et al. (2012) Association of genetic variants of melatonin receptor 1B with gestational plasma glucose level and risk of glucose intolerance in pregnant Chinese women. PLoS One 7: e40113. https://doi.org/10.1371/journal.pone.0040113.
185. Liu C, et al. (2010) MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai. BMC. Med. Genet. 11: 59. https://doi.org/10.1186/1471-2350-11-59.
186. Staiger H, et al. (2008) Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine beta-cell function. PLoS One 3: e3962. https://doi.org/10.1371/journal.pone.0003962.
187. Lyssenko V, et al. (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41: 82-88. https://doi.org/10.1038/ng.288.
188. Langenberg C, et al. (2009) Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. Diabetologia 52: 1537-1542. https://doi.org/10.1007/s00125-009-1392-x.
189. Marchetti P, et al. (2012) From genotype to human beta cell phenotype and beyond. Islets 4: 323-332. https://doi.org/10.4161/isl.22282.
190. Garaulet M, et al. (2015) Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 64: 1650-1657. https://doi.org/10.1016/j.metabol.2015.08.003.
191. Bonnefond A, et al. (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44: 297-301. https://doi.org/10.1038/ng.1053.
192. Karamitri A, et al. (2013) Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: association of melatonin MT2 receptor variants with type 2 diabetes. Mol. Endocrinol. 27: 1217-1233. https://doi.org/10.1210/me.2013-1101.
193. Liu RY, et al. (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab. 84: 323-327.
194. Sirin FB, et al. (2015) Plasma 8-isoPGF2α and serum melatonin levels in patients with minimal cognitive impairment and Alzheimer disease. Turk. J. Med. Sci. 45: 1073-1077.
195. Xu J, et al. (2015) Melatonin for sleep disorders and cognition in dementia: a meta-analysis of randomized controlled trials. Am. J. Alzheimers Dis. Other Demen. 30: 439-447. https://doi.org/10.1177/1533317514568005.
196. Zhang W, et al. (2016) Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials. Neurol. Sci. 37: 57-65. https://doi.org/10.1007/s10072-015-2357-0.
197. Furuya M, et al. (2012) Marked improvement in delirium with ramelteon: five case reports. Psychogeriatrics 12: 259-262. https://doi.org/10.1111/j.1479-8301.2012.00422.x.
198. Wu YH, et al. (2007) Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer's disease. Neurobiol. Aging 28: 1239-1247.
199. Cardinali DP, et al. (2014) Melatonin therapy in patients with Alzheimer's disease. Antioxidants 3: 245-277. https://doi.org/10.3390/antiox3020245.
200. Furio AM, Brusco LI , Cardinali DP (2007) Possible therapeutic value of melatonin in mild cognitive impairment. A retrospective study. J. Pineal Res. 43: 404-409.
201. Cardinali DP, et al. (2012) Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegen. Dis. 1: 280-291.
202. Leger D, Laudon M, Zisapel N (2004) Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am. J. Med. 116: 91-95.
203. Zhdanova IV, et al. (2001) Melatonin treatment for age-related insomnia. J. Clin. Endocrinol. Metab. 86: 4727-4730.
204. Ferracioli-Oda E, Qawasmi A , Bloch MH (2013) Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One 8: e63773. https://doi.org/10.1371/journal.pone.0063773.
205. Auld F, et al. (2017) Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 34: 10-22. https://doi.org/10.1016/j.smrv.2016.06.005.
206. Li T, et al. (2019) Exogenous melatonin as a treatment for secondary sleep disorders: A systematic review and meta-analysis. Front Neuroendocrinol. 52: 22-28. https://doi.org/10.1016/j.yfrne.2018.06.004.
207. Wilson SJ, et al. (2010) British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J. Psychopharmacol. 24: 1577-1601. https://doi.org/10.1177/0269881110379307.
208. Sugden D (1983) Psychopharmacological effects of melatonin in mouse and rat. J. Pharmacol. Exp. Ther. 227: 587-591.
209. Nordlund JJ , Lerner AB (1977) The effects of oral melatonin on skin color and on the release of pituitary hormones. J. Clin. Endocrinol. Metab. 45: 768-774.
210. Anton-Tay F, Diaz JL, Fernandez-Guardiola A (1971) On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci. I. 10: 841-850.
211. Jacob S, et al. (2002) Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J. Pineal Res. 33: 186-187.
212. Weishaupt JH, et al. (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 41: 313-323.
213. Chahbouni M, et al. (2011) Melatonin treatment counteracts the hyperoxidative status in erythrocytes of patients suffering from Duchenne muscular dystrophy. Clin. Biochem. 44: 853-858. https://doi.org/10.1016/j.clinbiochem.2011.04.001.
214. Lopez-Gonzalez A, et al. (2015) Melatonin treatment improves primary progressive multiple sclerosis: a case report. J. Pineal Res. 58: 173-177. https://doi.org/10.1111/jpi.12203.
215. Nickkholgh A, et al. (2011) The use of high-dose melatonin in liver resection is safe: first clinical experience. J. Pineal Res. 50: 381-388. https://doi.org/10.1111/j.1600-079X.2011.00854.x.
216. Waldhauser F, Saletu B , Trinchard-Lugan I (1990) Sleep laboratory investigations on hypnotic properties of melatonin. Psychopharmacology (Berl) 100: 222-226.
217. Voordouw BC, et al. (1992) Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J. Clin. Endocrinol. Metab. 74: 108-117.
218. Galley HF, et al. (2014) Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J. Pineal Res. 56: 427-438. https://doi.org/10.1111/jpi.12134.
219. Harpsoe NG, Andersen LP, Gogenur I, Rosenberg J (2015) Clinical pharmacokinetics of melatonin: a systematic review. Eur. J. Clin. Pharmacol. 71: 901-909. https://doi.org/10.1007/s00228-015-1873-4.
220. Leonardo-Mendonca RC, et al. (2015) The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Chronobiol. Int. 32: 1125-1134. https://doi.org/10.3109/07420528.2015.1069830.
221. ASHP statement on the use of medications for unlabeled uses (1992). Am. J. Hosp. Pharm. 49: 2006-2008.
222. Alexander GC, et al. (2011) Increasing off-label use of antipsychotic medications in the United States, 1995-2008. Pharmacoepidemiol. Drug Saf. 20: 177-184. https://doi.org/10.1002/pds.2082.
223. Bazzano AT, et al. (2009) Off-label prescribing to children in the United States outpatient setting. Acad. Pediatr. 9: 81-88. https://doi.org/10.1016/j.acap.2008.11.010.
224. Smithburger P L, et al. (2015) A multicenter evaluation of off-label medication use and associated adverse drug reactions in adult medical ICUs. Crit. Care Med. 43: 1612-1621. https://doi.org/10.1097/CCM.0000000000001022.
225. Saiyed MM, Ong PS, Chew L (2017) Off-label drug use in oncology: a systematic review of literature. J. Clin. Pharm. Ther. 42: 251-258. https://doi.org/10.1111/jcpt.12507.
226. Aagaard L, Kristensen K (2018) Off-label and unlicensed prescribing in Europe: implications for patients' informed consent and liability. Int. J. Clin. Pharm. 40: 509-512. https://doi.org/10.1007/s11096-018-0646-4.
227. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to melatonin and alleviation of subjective feelings of jet lag (ID 1953) and reduction of sleep onset latency, and improvement of sleep quality (ID 1953) pursuant to Article 13 of Regulation (EC) No 1924/20061. EFSA J. (2010), 8: 1461.
228. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to melatonin and reduction of sleep onset latency (ID 1698; 1780, 4080) pursuant to Article 13 of Regulation (EC) No 1924/2006. EFSA J. (2011) 9: 2241.
229. Tan DX, Zanghi BM, Manchester LC, Reiter RJ (2014) Melatonin identified in meats and other food stuffs: potentially nutritional impact. J. Pineal Res. 57: 213-218. https://doi.org/10.1111/jpi.12152.
230. Erland LA, Murch SJ, Reiter RJ, Saxena PK. (2015) A new balancing act: The many roles of melatonin and serotonin in plant growth and development. Plant Signal. Behav. 10: e1096469. https://doi.org/10.1080/15592324.2015.1096469.
231. Arnao MB, Hernandez-Ruiz,J (2015) Functions of melatonin in plants: a review. J. Pineal Res. 59: 133-150. https://doi.org/10.1111/jpi.12253.
232. Cardinali DP (2019) Melatonin as a chronobiotic/cytoprotector: its role in healthy aging. Biol. Rhythm Res. 50: 28-45. https://doi.org/10.1080/09291016.2018.1491200.
Published
2019-06-12
How to Cite
[1]
Cardinali, D. 2019. Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection?. Melatonin Research. 2, 2 (Jun. 2019), 106-132. DOI:https://doi.org/https://doi.org/10.32794/mr11250025.