Melatonin and brown adipose tissue: novel insights to a complex interplay

Melatonin and brown adipose tissue

  • Ingrid Fernandes Olesçuck Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
  • Ludmilla Scodeler Camargo Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
  • Paula Vargas Versignassi Carvalho Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
  • Caroline Aparecida Pereira Souza Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
  • Camila Congentino Gallo Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
  • Fernanda Gaspar do Amaral Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
Keywords: Melatonin, Brown adipose tissue, Rhythm, Energy Metabolism, Non-shivering thermogeneses, UCP-1, Seasonality

Abstract


As a chronobiotic molecule, melatonin finely tunes a variety of physiological processes including energy metabolism, reproduction and sleep-wake cycle, collaborating for the survival of the organisms. Since its pineal production occurs exclusively during the night, melatonin is responsible for signaling the circadian and circannual cycles to the organisms. This involves different ways of action that need to be considered when analyzing its effects in a given tissue/organism. Non-shivering thermogenesis (NST) is a crucial process for homeothermic animals and increasing evidences show its importance for the energy metabolic balance due to its influence in body weight control. The highly seasonal brown adipose tissue (BAT) is the site for NST and its metabolism is importantly influenced by melatonin. This review focuses on melatonin actions over BAT and the attention should be given to the relation between this signaling molecule and such a seasonally expressed tissue.



Author Biographies

Ingrid Fernandes Olesçuck, Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil

The ORCID number: http://orcid.org/0000-0001-9463-5282.

Ludmilla Scodeler Camargo, Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
Paula Vargas Versignassi Carvalho, Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
Caroline Aparecida Pereira Souza, Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
Camila Congentino Gallo, Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil

References

1 Buchalczyk A, Korybska Z (1964) Variation in the weight of the brown adipose tissue of Sorex araneus Linnaeus, 1758. Acta Theriol. (Warsz). 9: 193–215.
2. Lerner A, Case J, Yoshiyata T, Lee T, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Clin. Soc. 80 (10): 2587.
3. Klein DC, Weller JL (1972) Rapid light-induced decrease in pineal serotonin n-acetyltransferase activity. Science 177 (4048): 532–533.
4. Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-O-methyl-transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 174 (2): 245–262.
5. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49 (8): 654–664.
6. Cipolla-Neto J, do Amaral FG (2018) Melatonin As a Hormone: New Physiological and Clinical Insights. Endocr. Rev. 39: 990 –1028.
7. Poeggler B, Saarela S, Reiter RJ, Tan D ‐X, Chen L ‐D, Manchester LC, et al. (1994) Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann. NY. Acad. Sci. 738 (1): 419–420.
8. Reiter RJ, Tan D-X, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol. 50 (4): 1129–1146.
9. Guardiola-Lemaitre B (1997) Toxicology of melatonin. J. Biol. Rhythms 12 (6): 697–706.
10. Strassman RJ, Qualls CR, Lisansky EJ, Peake GT (1991) Elevated rectal temperature produced by all-night bright light is reversed by melatonin infusion in men. J Appl Physiol. 71 (6): 2178–2182.
11. Åkerstedt T, Fröberg JE, Friberg Y, Wetterberg L (1964) Melatonin excretion, body temperature and subjective arousal during 64 hours of sleep deprivation. Psychoneuroendocrinology 4 (3): 219–225.
12. Cajochen C, Zeitzer JM, Czeisler CA, Dijk D-J (2000) Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 115 (1): 75–83.
13. Torres-Farfan C, Richter HG, Rojas-García P, Vergara M, Forcelledo ML, Valladares LE, et al. (2003) mt1 melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J. Clin. Endocrinol. Metab. 88 (1): 450–458.
14. Boden G, Ruiz J, Urbain JL, Chen X (1996) Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. Metab. 271 (2): E246–252.
15. Reiter RJ (1973) Pineal Control of a Seasonal Reproductive Rhythm in Male Golden Hamsters Exposed to Natural Daylight and Temperature. Endocrinology 92 (2): 423–430.
16. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1 (2): 109–131.
17. Reiter RJ (1975) Changes in pituitary prolactin levels of female hamsters as a function of age, photoperiod, and pinealectomy. Acta Endocrinol. (Copenh). 79 (1): 43–50.
18. Heldmaier G, Steinlechner S, Rafael J, Vsiansky P (1981) Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 212 (4497): 917–919.
19. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol. Rev. 84 (1): 277–359.
20. Betz MJ, Enerbäck S (2015) Human brown adipose tissue: What we have learned so far. Diabetes 64 (7): 2352–2360.
21. Cinti S (2005)The adipose organ. Prostaglandins, Leukot Essent Fat Acids 73 (1): 9–15.
22. Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: Relation to human obesity. Obes. Rev. 12 (3): 167–188.
23. Smith RE (1964) Brown fat in the rat: adaptive changes in cold. Helgoländer- Wissenschaftliche Meeresuntersuchungen. 9 (1–4): 187–196.
24. Janský L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48 (1): 85–132.
25. Rothwell NJ, Stock MJ (1997) A role for brown adipose tissue in diet-induced thermogenesis. Obes. Res. 5 (6): 650–656.
26. Bianco AC, Silva JE (1987) Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J. Clin. Invest. 79 (1): 295–300.
27. Obregon M (2008) Thyroid hormone and adipocyte differentiation. Thyroid 18 (2): 185–195.
28. Au-yong ITH, Thorn N, Ganatra R, Perkins AC, Symonds ME (2009) brown adipose tissue and seasonal variation in humans. Diabetes 58 (11): 2583-2587.
29. Aleksiuk M, Frohlinger A (1971) Seasonal metabolic organization in the muskrat (Ondatra zibethica ). I. Changes in growth, thyroid activity, brown adipose tissue, and organ weights in nature. Can. J. Zool. 49 (8): 1143–1154.
30. Didow LA, Hayward JS (1969) Seasonal variations in the mass and composition of brown adipose tissue in the meadow vole, Microtus pennsylvanicus. Can. J. Zool. 47 (4): 547–555.
31. Lynch GR (1973) Seasonal changes in thermogenesis, organ weights, and body composition in the white-footed mouse, Peromyscus leucopus. Oecologia. 13 (4): 363–376.
32. Li X-S, Wang D-H (2005) Regulation of body weight and thermogenesis in seasonally acclimatized Brandt’s voles (Microtus brandti). Horm. Behav. 48 (3): 321–328.
33. Haim A, Shabtay A, Arad Z (1999) The thermoregulatory and metabolic responses to photoperiod manipulations of the Macedonian mouse (Mus macedonicus), a post-fire invader. J. Therm. Biol. 24 (4): 279–286.
34. Heldmaier G, Steinlechner S, Rafael J, Latteier B (1982) Photoperiod and ambient temperature as environmental cues for seasonal thermogenic adaptation in the Djungarian hamster, Phodopus sungorus. Int. J. Biometeorol. 26 (4): 339–345.
35. Wang J-M, Zhang Y-M, Wang D-H (2006) Photoperiodic regulation in energy intake, thermogenesis and body mass in root voles (Microtus oeconomus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 145 (4): 546–553.
36. Rafael J, Vsiansky P (1985) Photoperiodic control of the thermogenic capacity in brown adipose tissue of the Djungarian hamster. J. Therm. Biol. 10 (3): 167–170.
37. Demas GE, Bowers RR, Bartness TJ, Gettys TW (2002) Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus ). Am. J. Physiol. Integr. Comp. Physiol. 282 (1): R114–121.
38. Li X, Wang D (2007) Photoperiod and temperature can regulate body mass, serum leptin concentration, and uncoupling protein 1 in Brandt’s voles ( Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). Physiol. Biochem. Zool. 80 (3): 326–334.
39. Haim A (1996) Food and energy intake, non-shivering thermogenesis and daily rhythm of body temperature in the bushy-tailed gerbil Sekeetamys calurus: The role of photoperiod manipulations. J. Therm. Biol. 21 (1): 37–42.
40. Zhao Z-J, Wang D-H. (2005) Short photoperiod enhances thermogenic capacity in Brandt’s voles. Physiol. Behav. 85 (2): 143–149.
41. Zhu W, Cai J, Xiao L, Wang Z (2011) Effects of photoperiod on energy intake, thermogenesis and body mass in Eothenomys miletus in Hengduan Mountain region. J. Therm. Biol. 36 (7): 380–385.
42. Zhang L, Zhu W, Wang Z (2012) Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 163 (3–4): 253–259.
43. Geiser F, Heldmaier G (1995) The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus. J. Comp. Physiol. B. 165 (5): 406–415.
44. Powell CS, Blaylock ML, Wang R, Hunter HL, Johanning GL, Nagy TR (2002) Effects of energy expenditure and ucp 1 on photoperiod-induced weight gain in collared lemmings. Obes. Res. 10 (6): 541–550.
45. Zhao Z-J, Wang D-H (2006) Effects of photoperiod on energy budgets and thermogenesis in Mongolian gerbils (Meriones unguiculatus). J. Therm. Biol. 31 (4): 323–331.
46. Klaus S, Heldmaier G, Ricquier D (1988) Seasonal acclimation of bank voles and wood mice: nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B. 158 (2): 157–164.
47. Kronfeld-Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol. Biochem. Zool. 73 (1): 37–44.
48. Reiter R, Tan D-X, Sanchez-Barcelo E, Mediavilla M, Gitto E, Korkmaz A (2011) Circadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences. J. Exp. Integr. Med. 1 (1): 13.
49. Larsen PJ, Enquist LW, Card JP (1998) Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur. J. Neurosci. 10 (1): 128–145.
50. Reiter RJ, Rosales-Corral S, Coto-Montes A, Boga JA, Tan D-X, Davis JM, et al. (2011) The photoperiod, circadian regulation and chronodisruption: the requisite interplay between the suprachiasmatic nuclei and the pineal and gut melatonin. J. Physiol. Pharmacol. 62 (3): 269–274.
51. Gettinger RD, Ralph CL (1985) Thermoregulatory responses to photoperiod by kangaroo rats (Dipodomys ordii): Influence of night lighting on nonshivering thermogenesis and resting metabolism. J. Exp. Zool. 234 (3): 335–340.
52. Lynch GR, Sullivan JK, Gendler SL (1980) Temperature regulation in the mouse, Peromyscus leucopus: Effects of various photoperiods, pinealectomy and melatonin administration. Int. J. Biometeorol. 24 (1): 49–55.
53. Steinlechner S, Heldmaier G (1982) Role of photoperiod and melatonin in seasonal acclimatization of the djungarian hamster, Phodopus sungorus. Int. J. Biometeorol. 26 (4): 329–337.
54. Lynch GR, Epstein AL (1976) Melatonin induced changes in gonads, pelage and thermogenic characters in the white-footed mouse, peromyscus leucopus. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 53 (2): 67–68.
55. Holtorf AP, Heldmaier G, Thiele G, Steinlechner S (1985) Diurnal changes in sensitivity to melatonin in intact and pinealectomized djungarian hamsters: effects on thermogenesis, cold tolerance, and gonads. J. Pineal Res. 2 (4): 393–403.
56. Jiménez-Aranda A, Fernández-Vázquez G, Campos D, Tassi M, Velasco-Perez L, Tan DX, et al. (2013) Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J. Pineal Res. 55 (4): 416–423.
57. Souza CAP, Gallo CC, Camargo LS, Carvalho PVV, Olesçuck IF, Macedo F, et al. (2019) Melatonin multiple effects on brown adipose tissue molecular machinery. J. Pineal Res. 66 (2): e12549.
58. Bartness TJ, Wade GN (1984) Photoperiodic control of body weight and energy metabolism in syrian hamsters (mesocricetus auratus): role of pineal gland, melatonin, gonads, and diet. Endocrinology 114 (2): 492–498.
59. Andrews R V, Belknap RW (1985) Metabolic and thermoregulatory effects of photoperiod and melatonin on Peromyscus maniculatus acclimatization. Comp. Biochem. Physiol. A Comp. Physiol. 82 (3): 725–729.
60. Heldmaier G, Hoffmann K (1974) Melatonin stimulates growth of brown adipose tissue. Nature 247 (5438): 224–225.
61. Wade GN, Bartness TJ (1984) Seasonal obesity in Syrian hamsters: effects of age, diet, photoperiod, and melatonin. Am. J. Physiol. Integr. Comp. Physiol. 247 (2): R328–334.
62. Hall ES, Lynch GR (1985) Two daily melatonin injections differentially induce nonshivering thermogenesis and gonadal regression in the mouse (Peromyscus leucopus). Life Sci. 37 (8): 783–788.
63. Viswanathan M, Hissa R, George JC (1986) Effects of short photoperiod and melatonin treatment on thermogenesis in the syrian hamster. J. Pineal Res. 3 (4): 311–321.
64. Fernández Vázquez G, Reiter RJ, Agil A (2018) Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control. J. Pineal Res. 64 (4): e12472.
65. Erren TC, Reiter RJ, Piekarski C (2003) Light, timing of biological rhythms, and chronodisruption in man. Naturwissenschaften. 90 (11): 485–494.
66. Hagelstein KA, Folk GE (1979) Effects of photoperiod, cold acclimation and melatonin on the white rat. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 62 (2): 225–229.
67. Bartness TJ, Wade GN (1985) Body weight, food intake and energy regulation in exercising and melatonin-treated siberian hamsters. Physiol. Behav. 35 (5): 805–808.
68. Kott KS, Horwitz BA (1983) Photoperiod and pinealectomy do not affect cold-induced deposition of brown adipose tissue in the long-evans rat. Cryobiology 20 (1): 100–105.
69. Triandafillou J, Hellenbrand W, Himms-Hagen J. (1984) Trophic response of hamster brown adipose tissue: roles of norepinephrine and pineal gland. Am. J. Physiol. Metab. 247 (6): E793–799.
70. Viswanathan M, George JC (1984) Pinealectomy has no effect on diet-induced thermogenesis and brown adipose tissue proliferation in rats. J. Pineal Res. 1 (1): 69–74.
71. Buonfiglio D, Parthimos R, Dantas R, Cerqueira Silva R, Gomes G, Andrade-Silva J, et al. (2018) Melatonin absence leads to long-term leptin resistance and overweight in rats. Front. Endocrinol. (Lausanne). 9: 1–12.
72. Costa EJX, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J. Pineal Res. 19 (3): 123–126.
73. Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, et al. (2016) Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol. 173 (18): 2702–2725.
74. Weaver D, Rivkees S, Reppert S (1989) Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J. Neurosci. 9 (7): 2581–2590.
75. Glass D, Lynch R (1982) Evidence for a brain site of melatonin action in the white-footed mouse, Peromyscus leucopus. Neuroendocrinology 34 (1): 1–6.
76. Klosen P, Lapmanee S, Schuster C, Guardiola B, Hicks D, Pevet P, et al. (2019) MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J. Pineal Res. e12575.
77. Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19 (5): 741–756.
78. Teubner BJW, Leitner C, Thomas MA, Ryu V, Bartness TJ (2015) An intact dorsomedial posterior arcuate nucleus is not necessary for photoperiodic responses in Siberian hamsters. Horm. Behav. 70: 22–29.
79. Ryu V, Zarebidaki E, Albers HE, Xue B, Bartness TJ (2018) Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiol. Behav. 190: 11–20.
80. Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R (2001) Functional expression of MT2 (Mel1b) melatonin receptors in human paz6 adipocytes. Endocrinology 142 (10): 4264–4271.
81. Le Gouic S, Atgié C, Viguerie-Bascands N, Hanoun N, Larrouy D, Ambid L, et al. (1997) Characterization of a melatonin binding site in Siberian hamster brown adipose tissue. Eur. J. Pharmacol. 339 (2–3): 271–278.
82. Weaver DR, Liu C, Reppert SM. (1996) Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol. Endocrinol. 10 (11): 1478–1487.
83. Bechtold DA, Sidibe A, Saer BRC, Li J, Hand LE, Ivanova EA, et al. (2012) A role for the melatonin-related receptor gpr50 in leptin signaling, adaptive thermogenesis, and torpor. Curr. Biol. 22 (1): 70–77.
84. Becker-André M, Wiesenberg I, Schaeren-Wiemers N, André E, Missbach M, Saurat JH, et al. (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J. Biol. Chem. 269 (46): 28531–28534.
85. Carlberg C, Wiesenberg I. (1995) The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: An unexpected relationship. J. Pineal Res. 18 (4): 171–178.
86. Bertin R, Guastavino JM, Portet R (1990) Effects of cold acclimation on the energetic metabolism of the Staggerer mutant mouse. Physiol. Behav. 47 (2): 377–380.
87. Lau P, Fitzsimmons RL, Raichur S, Wang S-CM, Lechtken A, Muscat GEO. (2008) The orphan nuclear receptor, RORα, regulates gene expression that controls lipid metabolism. J. Biol. Chem. 283 (26): 18411–18421.
88. Kang HS, Okamoto K, Takeda Y, Beak JY, Gerrish K, Bortner CD, et al. (2011) Transcriptional profiling reveals a role for RORα in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol. Genomics. 43 (13): 818–828.
89. Lau P, Tuong ZK, Wang S-C, Fitzsimmons RL, Goode JM, Thomas GP, et al. (2015) Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am. J. Physiol. Metab. 308 (2): E159–171.
90. Cook DN, Kang HS, Jetten AM (2015) Retinoic acid-related orphan receptors (RORs): regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl. Recept. Res. 2: 101185.
91. Slominski AT, Zmijewski MA, Jetten AM. (2016) RORα is not a receptor for melatonin. BioEssays. 38 (12): 1193–1194.
92. Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, et al. (2013) The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503 (7476): 410–413.
93. Nam D, Chatterjee S, Yin H, Liu R, Lee J, Yechoor VK, et al. (2015) Novel function of rev-erbα in promoting brown adipogenesis. Sci. Rep. 5:1–15.
94. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330 (6009): 1349–1354.
95. Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD, et al. (2014) The Therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Cell Metab. 19 (2): 193–208.
96. Nam D, Yechoor VK, Ma K (2016) Molecular clock integration of brown adipose tissue formation and function. Adipocyte 5 (2): 243–250.
97. Brzezińska-Ślebodzińska E, Ślebodziński AB, Styczyńska E (1998) Stimulatory effect of melatonin on the 5’-monodeiodinase activity in the liver, kidney, and brown adipose tissue during the early neonatal period of the rabbit. J. Pineal Res. 24 (3): 137–141.
98. Puig-Domingo M, Guerrero JM, Menéndez-Pelaez A, Reiter RJ (1989) Melatonin specifically stimulates type-II thyroxine 5′-deiodination in brown adipose tissue of Syrian hamsters. J. Endocrinol. 122 (2): 553–556.
99. Puig-Domingo M, Guerrero JM, Reiter RJ, Tannenbaum MJ, Hurlbut EC, Gonzalez-Brito A, et al. (1988) Thyroxine ′-deiodination in brown adipose tissue and pineal gland: implications for thermogenic regulation and role of melatonin. Endocrinology 123 (2): 677–680.
100. Guerrero JM, Santana C, Reiter RJ (1990) Type II thyroxine 5’-deiodinase activity in the rat brown adipose tissue, pineal gland, harderian gland, and cerebral cortex: effect of acute cold exposure and lack of relationship to pineal melatonin synthesis. J. Pineal Res. 9 (2): 159–166.
101. Stokkan K-A, Nonaka KO, Lerchl A, Vaughan MK, Reiter RJ. (1991) Low temperature stimulates pineal activity in Syrian hamsters. J Pineal Res. 10 (1): 43–48.
102. Alonso-Vale MIC, Andreotti S, Mukai PY, Borges-Silva CDN, Peres SB, Cipolla-Neto J, et al. (2008) Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 45 (4): 422–429.
103. Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, et al. (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J. Pineal Res. 28 (4): 242–248.
104. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 54 (2): 127–138.
105. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R (2019) Melatonin synthesis and function : evolutionary history in animals and plants. Front. Endocrinol. (Lausanne). 10: 1–16.
106. McElroy JF, Wade GN (1986) Short photoperiod stimulates brown adipose tissue growth and thermogenesis but not norepinephrine turnover in Syrian hamsters. Physiol. Behav. 37 (2):307–11.
107. Mercer JG, Duncan JS, Lawrence CB, Trayhurn P (1994) Effect of photoperiod on mitochondrial GDP binding and adenylate cyclase activity in brown adipose tissue of djungarian hamsters. Physiol. Behav. 56 (4): 737–740.
108. Wiesinger H, Heldmaier G, Buchberger A (1989) Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDP-binding of brown fat mitochondria in the Djungarian hamster Phodopus s. sungorus. Pflügers Arch. Eur. J. Physiol. 413 (6): 667–672.
109. Prunet-Marcassus B, Ambid L, Viguerie-Bascands N, Penicaud L, Casteilla L (2001) Evidence for a direct effect of melatonin on mitochondrial genome expression of Siberian hamster brown adipocytes. J. Pineal Res. 30 (2): 108–115.
110. Harms M, Seale P (2013) Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 19 (10): 1252–1263.
111. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL / 6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53:619–629.
112. Klein DC (1972) Evidence for the placental transfer of 3 H-acetyl-melatonin. Nat. New Biol. 237 (73): 117–118.
113. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y (1998) Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 25 (3): 129–134.
114. Illnerová H, Buresová M, Presl J (1993) Melatonin rhythm in human milk. J. Clin. Endocrinol. Metab. 77 (3): 838–841.
115. Kennaway DJ, Stamp GE, Goble FC (1992) Development of melatonin production in infants and the impact of prematurity. J. Clin. Endocrinol. Metab. 75 (2): 367–369.
116. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA (2014) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update. 20 (2): 293–307.
117. Valenzuela FJ, Vera J, Venegas C, Pino F, Lagunas C (2015) Circadian system and melatonin hormone: risk factors for complications during pregnancy. Obstet. Gynecol. Int. 2015: 825802. 1–10.
118. Seron-Ferre M, Reynolds H, Mendez NA, Mondaca M, Valenzuela F, Ebensperger R, et al. (2015) Impact of maternal melatonin suppression on amount and functionality of brown adipose tissue (BAT) in the newborn sheep. Front. Endocrinol. (Lausanne). 5: 1–12.
119. Luz J, Griggio MA, Vieira L V (2003) Impact of maternal food restriction on cold-induced thermogenesis in the offspring. Biol. Neonate 84 (3): 252–258.
120. Symonds ME, Pope M, Sharkey D, Budge H (2012) Adipose tissue and fetal programming. Diabetologia 55 (6): 1597-1606.
121. Schroeder M, Shbiro L, Moran TH, Weller A. (2010) Maternal environmental contribution to adult sensitivity and resistance to obesity in long evans rats. PLoS One 5 (11): 1–12.
122. Torres-Farfan C, Rocco V, Monsó C, Valenzuela FJ, Campino C, Germain A, et al. (2006) Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology 147 (10): 4618–4626.
123. Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, et al. (2008) Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J. Physiol. 586 (16): 4017–4027.
124. Mendez N, Halabi D, Spichiger C, Salazar ER, Vergara K, Alonso-Vasquez P, et al. (2016) Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology 157 (12): 4654–4668.
125. Spichiger C, Torres-Farfan C, Galdames HA, Mendez N, Alonso- Vazquez P, Richter HG. (2015) Gestation under chronic constant light leads to extensive gene expression changes in the fetal rat liver. Physiol. Genomics. 47 (12): 621-633.
126. Gaspar F, Cipolla-neto J. (2018)A brief review about melatonin , a pineal hormone. Arch. Endocrinol. Metab. 62 (4): 472–479.
Published
2019-12-15
How to Cite
[1]
Olesçuck, I., Camargo, L., Carvalho, P., Souza, C., Gallo, C. and Amaral, F. 2019. Melatonin and brown adipose tissue: novel insights to a complex interplay. Melatonin Research. 2, 4 (Dec. 2019), 25-41. DOI:https://doi.org/https://doi.org/10.32794/mr11250039.