High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection

Melatonin and the neurologic sequels of covid-19 infection

  • Daniel Pedro Cardinali Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
Keywords: allometry, COVID-19, cytoprotection, inflammation, melatonin, stroke

Abstract

The therapeutic potential of melatonin as an agent to counteract the consequences of COVID-19 infections is due to its wide-ranging effects as a powerful antioxidant, anti-inflammatory, and immunostimulant, as well as to a possible antiviral action. In view of the recently reported evidence on the occurrence of neurological sequels in COVID-19-infected patients, another putative application of melatonin emerges based on its neuroprotective properties. In this manuscript a brief discussion of melatonin activity in animal models of ischemic and hemorrhagic stroke and the allometric calculations of the possible human equivalent doses are made. Based on the safety of melatonin, and in order to maximize its therapeutic opportunity, doses of 100 - 300 mg p.o. or i.v.  are proposed.

 

References

1 Reiter RJ, Ma Q, Sharma S (2020) Treatment of Ebola and other infectious diseases: melatonin "goes viral". Melatonin Res. 3: 43-57. doi: 10.32794/mr11250047.
2 Tan DX, Hardeland R (2020) Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: focus on COVID-19. Melatonin Res. 3: 120-143. doi: 10.32794/mr11250052.
3 Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. doi: 10.1001/jamaneurol.2020.1127.
4 Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. doi: 10.1002/jmv.25728 doi: 10.1002/jmv.25728.
5 Kaji R (2019) Global burden of neurological diseases highlights stroke. Nat. Rev. Neurol. 15: 371-372. doi: 10.1038/s41582-019-0208-y.
6 Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. (2020) COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 250: 117583. doi: 10.1016/j.lfs.2020.117583.
7 Maestroni GJ (1999) Therapeutic potential of melatonin in immunodeficiency states, viral diseases, and cancer. Adv. Exp. Med. Biol. 467: 217-226. DOI: 10.1007/978-1-4615-4709-9_28.
8 Anderson G, Maes M, Markus RP, Rodriguez M (2015) Ebola virus: melatonin as a readily available treatment option. J. Med. Virol. 87: 537-543. doi: 10.1002/jmv.24130.
9 Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front. Endocrinol. (Lausanne) 10: 480. doi: 10.3389/fendo.2019.00480.
10 Ben-Nathan D, Maestroni GJ, Lustig S, Conti A (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 140: 223-30. DOI: 10.1007/bf01309858.
11 Hardeland R (2018) Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res. 65: e12525. doi: 10.1111/jpi.12525.
12 Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, et al. (2018) Melatonin in macrophage biology: current understanding and future perspectives. J. Pineal Res. 66 (2): e12547. doi: 10.1111/jpi.12547.
13 Pedrosa AM, Weinlich R, Mognol GP, Robbs BK, Viola JP, Campa A, et al. (2010) Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J. Immunol. 184: 3487-3494. doi: 10.4049/jimmunol.0902961.
14 Shang Y, Xu SP, Wu Y, Jiang YX, Wu ZY, Yuan SY, et al. (2009) Melatonin reduces acute lung injury in endotoxemic rats. Chin. Med. J. (Engl ) 122: 1388-1393.
15 Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108: 518-524. DOI: 10.1182/blood-2005-09-3691.
16 Ahmadi Z, Ashrafizadeh M (2020) Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmaco.l 34: 11-19. doi: 10.1111/fcp.12498.
17 Habtemariam S, Daglia M, Sureda A, Selamoglu Z, Gulhan MF, Nabavi SM (2017) Melatonin and respiratory diseases: a review. Curr. Top. Med. Chem. 17: 467-488. DOI: 10.2174/1568026616666160824120338.
18 Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, et al. (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59: 403-419. doi: 10.1111/jpi.12267.
19 Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51: 1-16. doi: 10.1111/j.1600-079X.2011.00916.x.
20 Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuña-Castroviejo D (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int. J. Mol. Sci. 19 (8): pii: E2439. doi: 10.3390/ijms19082439.
21 Huang Q, Riviere JE (2014) The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert. Opin. Drug Metab. Toxicol. 10: 1241-1253.
22 Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J. 22: 659-661. DOI: 10.1096/fj.07-9574LSF.
23 Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Yegen BC, Sener G (2009) Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J. Pineal Res. 46: 324-332. doi: 10.1111/j.1600-079X.2009.00664.x.
24 Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, et al. (2012) Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J. Pineal Res. 53: 129-137. doi: 10.1111/j.1600-079X.2012.00978.x.
25 Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH (2008) Melatonin decreases mortality following severe subarachnoid hemorrhage. J. Pineal Res. 44: 197-204. doi: 10.1111/j.1600-079X.2007.00508.x.
26 Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, et al. (2014) Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res. 56: 12-19. doi: 10.1111/jpi.12086.
27 Chen J, Chen G, Li J, Qian C, Mo H, Gu C, et al. (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J. Pineal Res. 57: 340-347. doi: 10.1111/jpi.12173.
28 Wang Z, Wu L, You W, Ji C, Chen G (2013) Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J. Pineal Res. 55: 399-408. doi: 10.1111/jpi.12087.
29 Fang Q, Chen G, Zhu W, Dong W, Wang Z (2009) Influence of melatonin on cerebrovascular proinflammatory mediators expression and oxidative stress following subarachnoid hemorrhage in rabbits. Mediators Inflamm. 2009: 426346. doi: 10.1155/2009/426346.
30 Ueda Y, Masuda T, Ishida A, Misumi S, Shimizu Y, Jung CG, et al. (2014) Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats. J. Neurosci. Res. 92: 1499-1508. doi: 10.1002/jnr.23434.
31 Rojas H, Lekic T, Chen W, Jadhav V, Titova E, Martin RD et al. (2008) The antioxidant effects of melatonin after intracerebral hemorrhage in rats. Acta. Neurochir. Suppl 105: 19-21. DOI: 10.1007/978-3-211-09469-3_4.
32 Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, et al. (2010) Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J. Neurotrauma 27: 627-637. doi: 10.1089/neu.2009.1163.
33 Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, et al. (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J. 14: 1307-1317. DOI: 10.1096/fj.14.10.1307.
34 Kondoh T, Uneyama H, Nishino H, Torii K (2002) Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci. 72: 583-590. DOI: 10.1016/s0024-3205(02)02256-7.
35 Lin YW, Chen TY, Hung CY, Tai SH, Huang SY, Chang CC, et al. (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int. J. Mol. Med. 42: 182-192. doi: 10.3892/ijmm.2018.3607.
36 Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, et al. (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J. Pineal Res. 42: 297-309. DOI: 10.1111/j.1600-079X.2007.00420.x.
37 Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI, et al. (2004) Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J. Pineal Res. 36: 33-42. DOI: 10.1046/j.1600-079x.2003.00093.x.
38 Alonso-Alconada D, Alvarez A, Lacalle J, Hilario E (2012) Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol. Histopathol. 27: 771-783. doi: 10.14670/HH-27.771.
39 Letechipia-Vallejo G, Lopez-Loeza E, Espinoza-Gonzalez V, Gonzalez-Burgos I, Olvera-Cortes ME, Morali G, et al. (2007) Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J. Pineal Res. 42: 138-146. DOI: 10.1111/j.1600-079X.2006.00395.x.
40 Cuzzocrea S, Costantino G, Gitto E, Mazzon E, Fulia F, Serraino I, et al. (2000) Protective effects of melatonin in ischemic brain injury. J. Pineal Res. 29: 217-27. DOI: 10.1034/j.1600-0633.2002.290404.x.
41 Sun FY, Lin X, Mao LZ, Ge WH, Zhang LM, Huang YL, et al. (2002) Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J. Pineal Res. 33: 48-56. DOI: 10.1034/j.1600-079x.2002.01891.x.
42 Pei Z, Pang SF, Cheung RT (2003) Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34: 770-775. DOI: 10.1161/01.STR.0000057460.14810.3E.
43 Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, et al. (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J. Pineal Res. 58: 61-70. doi: 10.1111/jpi.12193.
44 Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, et al. (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40: 1877-85. doi: 10.1161/STROKEAHA.108.540765.
45 Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, et al. (2006) Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J. Pineal Res. 40: 242-50. DOI: 10.1111/j.1600-079X.2005.00307.x.
46 Hung YC, Chen TY, Lee EJ, Chen WL, Huang SY, Lee WT, et al. (2008) Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J. Pineal Res. 45: 459-467. doi: 10.1111/j.1600-079X.2008.00617.x.
47 Sugden D (1983) Psychopharmacological effects of melatonin in mouse and rat. J. Pharmacol. Exp. Ther. 227: 587-591.
48 Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR (2014) Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J. Pineal Res. 56: 427-438. doi: 10.1111/jpi.12134.
49 Andersen LP, Werner MU, Rosenkilde MM, Harpsoe NG, Fuglsang H, Rosenberg J, et al. (2016) Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol. 17: 8. doi: 10.1186/s40360-016-0052-2.
50 Cardinali DP (2019) Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection? Melatonin Res. 2: 106-132. doi: 10.32794/mr11250025.
51 Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, et al. (2019) The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled trial. Inflammopharmacology 27 (1): 67-76 doi: 10.1007/s10787-018-0539-0.
52 Sanchez-Lopez AL, Ortiz GG, Pacheco-Moises FP, Mireles-Ramirez MA, Bitzer-Quintero OK, Delgado-Lara DLC, et al. (2018) Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 49: 391-398. doi: 10.1016/j.arcmed.2018.12.004.
53 Kucukakin B, Lykkesfeldt J, Nielsen HJ, Reiter RJ, Rosenberg J, Gogenur I (2008) Utility of melatonin to treat surgical stress after major vascular surgery--a safety study. J. Pineal Res. 44: 426-431. doi: 10.1111/j.1600-079X.2007.00545.x
54 Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, et al. (2018) The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J. Pineal Res. 65: e12521. doi: 10.1111/jpi.12521.
55 Shafiei E, Bahtoei M, Raj P, Ostovar A, Iranpour D, Akbarzadeh S, et al. (2018) Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Medicine (Baltimore) 97: e11383. doi: 10.1097/MD.0000000000011383.
56 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395: 507-513. doi: 10.1016/S0140-6736(20)30211-7.
57 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. doi: 10.1016/S0140-6736(20)30183-5.
58 Volt H, Garcia JA, Doerrier C, Diaz-Casado ME, Guerra-Librero A, Lopez LC, et al. (2016) Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J. Pineal Res. 60: 193-205. doi: 10.1111/jpi.12303.
59 Dai W, Huang H, Si L, Hu S, Zhou L, Xu L, et al. (2019) Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. Int. J. Mol. Med. 44: 1197-1204. doi: 10.3892/ijmm.2019.4306.
60 Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, et al. (2020) Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J. Cell Physiol. 235: 2847-2856. doi: 10.1002/jcp.29190.
61 Chen J, Xia H, Zhang L, Zhang H, Wang D, Tao X (2019) Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed. Pharmacother. 117: 109150. doi: 10.1016/j.biopha.2019.109150.
62 Lewandowska K, Malkiewicz MA, Sieminski M, Cubala WJ, Winklewski PJ, Medrzycka-Dabrowska WA (2020) The role of melatonin and melatonin receptor agonist in the prevention of sleep disturbances and delirium in intensive care unit - a clinical review. Sleep Med. 69: 127-134. doi: 10.1016/j.sleep.2020.01.019.
63 Mistraletti G, Umbrello M, Sabbatini G, Miori S, Taverna M, Cerri B, et al. (2015) Melatonin reduces the need for sedation in ICU patients: a randomized controlled trial. Minerva Anestesiol. 81: 1298-1310.
Published
2020-06-15
How to Cite
[1]
Cardinali, D.P. 2020. High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection. Melatonin Research. 3, 3 (Jun. 2020), 311-317. DOI:https://doi.org/https://doi.org/10.32794/mr11250064.