Low melatonin as a contributor to SARS-CoV-2 disease
Low melatonin and SARS-CoV-2
Abstract
That the pineal gland is a source of melatonin is widely known; however, by comparison, few know of the much larger pool of extrapineal melatonin. That pool is widely distributed in all animals, including those that do not have a pineal gland, e.g., insects. Extrapineal melatonin is not released into the blood but is used locally to function as an antioxidant, anti-inflammatory agent, etc. A major site of action of peripherally-produced melatonin is the mitochondria where it neutralizes reactive oxygen species (ROS) that are generated during oxidative phosphorylation. Its role also includes major actions as an immune modulator reducing overreactions to foreign agents while simultaneously boosting immune processes. During a pandemic such as coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, melatonin is capable of suppressing the damage inflicted by the cytokine storm. The implications of melatonin in susceptibility and treatment of COVID-19 disease are discussed.
References
2. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80: 2587. doi:10.1021/ja01543a060.
3. Wilkinson M, Arendt J, Bradtke J, DeZiegler D, de Ziegler D (1977) Determination of a dark-induced increase of pineal N-acetyl transferase activity and simultaneous radioimmunoassay of melatonin in pineal, serum and pituitary tissue of the male rat. J. Endocrinol. 72: 243–244. doi:10.1677/joe.0.0720243.
4. Pang SF, Brown GM, Grota LJ, Rodman RL (1977) Radioimmunoassay of melatonin in pineal glands, harderian glands, retinas and sera of rats or chickens. Neuroendocrinology 23: 1–13.
5. Pelham RW, Ralph CL, Campbell IM (1972) Mass spectral identification of melatonin in blood. Biochem. Biophys. Res. Commun. 46: 1236–1241.
6. Harlow HJ, Phillips JA, Ralph CL (1981) Day-night rhythm in plasma melatonin in a mammal lacking a distinct pineal gland, the nine-banded armadillo. Gen. Comp. Endocrinol. 45: 212–218.
7. Brown GM (1992) Day-night rhythm disturbance, pineal function and human disease. Horm Res 37 (Suppl 3): 105–111. doi:10.1159/000182410.
8. Cardinali DP, Brusco LI, Lloret SP, Furio AM (2002) Melatonin in sleep disorders and jet-lag. Neuro.Endocrinol. Lett. 23 (Suppl 1): 9–13.
9. Deacon S, Arendt J. Adapting to phase shifts (1996) II. Effects of melatonin and conflicting light treatment. Physiol. Behav. 59: 675–682.
10. Bojkowski CJ, Arendt J (1988) Annual changes in 6-sulphatoxymelatonin excretion in man. Acta Endocrinol. (Copenh) 117: 470–476.
11. Rajaratnam SM, Redman JR (1997) Effects of daily melatonin administration on circadian activity rhythms in the diurnal Indian palm squirrel (Funambulus pennanti). J. Biol. Rhythms 12: 339–347.
12. Arendt J (1985) “Assay of melatonin and its metabolites: results in normal and unusual environments,” in Melatonin in humans, eds. RJ Wurtman, F Waldhauser (Cambridge, Mass: Cbsm), 11–32.
13. Brown GM, Seggie J, Grota LJ (1985) Serum melatonin response to melatonin administration in the Syrian hamster. Neuroendocrinology 41: 31–35. doi:10.1159/000124150.
14. Waldhauser F, Dietzel M. (1985) Daily and annual rhythms in human melatonin secretion: role in puberty control. Ann. N. Y. Acad. Sci. 453: 205–214.
15. Dalery J, Claustrat B, Brun J, Terra JL, Chazot G, de Villard R (1985) Daily profiles of melatonin, cortisol and gonadotropins in 8 adolescents with anorexia nervosa. [French]. Encephale 11: 25–28.
16. Lewy AJ, Sack RL, Singer CM (1985) Melatonin, light and chronobiological disorders. Ciba Found Symp. 117: 231–252.
17. Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, Klerman EB (2009) Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet 373: 482–491.
18. Arendt J, Rajaratnam SMW (2008) Melatonin and its agonists: An update. Br. J. Psychiatry. 193: 267–269. doi:10.1192/bjp.bp.108.050955.
19. Burgess HJ, Emens JS (2016) Circadian-based therapies for circadian rhythm sleep-wake disorders. Curr. Sleep Med. Reports 2: 158–165. doi:10.1007/s40675-016-0052-1
20. Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, Feng Y, Liu W (2017) A review of sleep disorders and melatonin. Neurol. Res 39: 559–565. doi:10.1080/01616412.2017.1315864.
21. MacFarlane JG, Cleghorn JM, Brown GM, Streiner DL (1991) The effects of exogenous melatonin on the total sleep time and daytime alertness of chronic insomniacs: a preliminary study. Biol. Psychiatry 30: 371–376. doi:10.1016/0006-3223(91)90293-U.
22. Kayumov L, Zhdanova I V, Shapiro CM (2000) Melatonin, sleep, and circadian rhythm disorders. Semin. Clin. Neuropsychiatry 5: 44–55.
23. Cardinali DP, Rosner JM (1971) Retinal localization of the hydroxyindole-0-methyl transferase (HIOMT) in the rat. Endocrinology 89: 301–303.
24. Cardinali DP, Larin F, Wurtman RJ (1972) Action spectra for effects of light on hydroxyindole-0-methyl transferases in rat pineal, retina and harderian gland. Endocrinology 91: 877–886.
25. Raikhlin NT, Kvetnoy IM (1976) Melatonin and enterochromaffine cells. Acta Histochem. 55: 19–25.
26. Raikhlin NT, Kvetnoy IM, Tolkachev VN (1975) Melatonin may be synthesised in enterochromaffin cells. Nature 255: 344–345.
27. Bubenik GA, Brown GM, Grota LJ (1977) Immunohistological localization of melatonin in the rat digestive system. Experientia 33: 662–663. doi:10.1007/BF01946561.
28. Bubenik GA, Brown GM, Grota LJ (1976) Immunohistochemical localization of melatonin in the rat Harderian gland. J. Histochem. Cytochem. 24: 1173–1177.
29. Bubenik GA, Brown GM, Uhlir I, Grota LJ (1974 Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Res. 81: 233–242. doi:10.1016/0006-8993(74)90938-X.
30. Bubenik GA (1980) Localization of melatonin in the digestive tract of the rat. Effect of maturation, diurnal variation, melatonin treatment and pinealectomy. Horm. Res. 12: 313–323.
31. Bubenik GA, Hacker RR, Brown GM, Bartos L (1999) Melatonin concentrations in the luminal fluid, mucosa, and muscularis of the bovine and porcine gastrointestinal tract. J. Pineal Res. 26: 56–63.
32. Bubenik GA, Ayles HL, Friendship RM, Brown GM, Ball RO (1998) Relationship between melatonin levels in plasma and gastrointestinal tissues and the incidence and severity of gastric ulcers in pigs. J. Pineal Res. 24: 62–66. doi:10.1111/j.1600-079X.1998.tb00367.x.
33. Bubenik GA, Brown GM, Hacker RR, Bartoš L (2000) Melatonin concentrations in the gastrointestinal tissues of bovine fetuses. Acta Vet. Brno. 69: 177–182.
34. Huether G, Poeggeler B, Reimer A, George A (1992) Effect of tryptophan administration on circulating melatonin levels in chicks and rats: Evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci. 51: 945–953. doi:10.1016/0024-3205(92)90402-B.
35. Bubenik GA, Brown GM (1997) Pinealectomy reduces melatonin levels in the serum but not in the gastrointestinal tract of rats. Biol. Signals 6: 40–44. doi:10.1159/000109107.
36. Huether G (1994) Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann. N. Y. Acad. Sci. 719: 146–158.
37. Venegas C, García JA, Escames G, Ortiz F, López A, Doerrier C, García-Corzo L, López LC, Reiter RJ, Acuña-Castroviejo D (2012) Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 52: 217–227. doi:10.1111/j.1600-079X.2011.00931.x.
38. Lewy AJ, Tetsuo M, Markey SP, Goodwin FK, Kopin IJ (1980) Pinealectomy abolishes plasma melatonin in the rat. J. Clin. Endocrinol. Metab. 50: 204–205.
39. Ozaki Y, Lynch HJ (1976) Presence of melatonin in plasma and urine or pinealectomized rats. Endocrinology 99: 641–644. doi:10.1210/endo-99-2-641.
40. Lynch HJ, Ozaki Y, Shakal D, Wurtman RJ (1975) Melatonin excretion of man and rats: Effect of time of day, sleep, pinealectomy and food consumption. Int. J. Biometeorol. 19: 267–279. doi:10.1007/BF01451037.
41. Hajak G, Huether G, Blanke J, Blomer M, Freyer C, Poeggeler B, Reimer A, Rodenbeck A, Schulz-Varszegi M, Ruther E (1991) The influence of intravenous L-tryptophan on plasma melatonin and sleep in men. Pharmacopsychiatry 24: 17–20.
42. Fukushige H, Fukuda Y, Tanaka M, Inami K, Wada K, Tsumura Y, Kondo M, Harada T, Wakamura T, Morita T (2014) Effects of tryptophan-rich breakfast and light exposure during the daytime on melatonin secretion at night. J. Physiol. Anthropol. 33: 1–9. doi:10.1186/1880-6805-33-33.
43. Huether G (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 49: 665–670. doi:10.1007/BF01923948.
44. Wada K, Yata S, Akimitsu O, Krejci M, Noji T, Nakade M, Takeuchi H, Harada T (2013) A tryptophan-rich breakfast and exposure to light with low color temperature at night improve sleep and salivary melatonin level in Japanese students. J. Circadian. Rhythms 11: 1–9. doi:10.1186/1740-3391-11-4.
45. Bubenik GA, Pang SF, Cockshut JR, Smith PS, Grovum LW, Friendship RM, Hacker RR (2000) Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep. J. Pineal Res. 28: 9–15. doi:10.1034/j.1600-079x.2000.280102.x.
46. Hardeland R, Pandi-Perumal S, Poeggeler B (2007) Melatonin in plants–focus on a vertebrate night hormone with cytoprotective properties. Funct. Plant Sci. Biotechnol. 1: 32–45.
47. Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 18: 28–31.
48. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter R (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 35: 627–634.
49. Johns NP, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M (2013) Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J. Agric. Food Chem. 61: 913–919. doi:10.1021/jf300359a.
50. Sae-Teaw M, Johns J, Johns NP, Subongkot S (2013) Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res. 55: 58–64. doi:10.1111/jpi.12025.
51. Badria FA. (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food 5: 153–157. doi:10.1089/10966200260398189.
52. Bubenik GA, Purtill RA, Brown GM, Grota LJ (1978) Melatonin in the retina and the Harderian gland. Ontogeny, diurnal variations and melatonin treatment. Exp. Eye Res. 27: 323–333. doi:10.1016/0014-4835(78)90166-5.
53. Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J, Szczesniewski A, Slugocki G, McNulty J, Kauser S, Tobin DJ, et al. (2002) Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 16: 896–898. doi:10.1096/fj.01-0952fje.
54. Kobayashi H, Kromminga A, Dunlop TW, Tychsen B, Conrad F, Suzuki N, Memezawa A, Bettermann A, Aiba S, Carlberg C, et al. (2005) A role of melatonin in neuroectodermal‐mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J. 19: 1710–1712. doi:10.1096/fj.04-2293fje.
55. Naranjo MC, Guerrero JM, Rubio A, Lardone PJ, Carrillo-Vico A, Carrascosa-Salmoral MP, Jiménez-Jorge S, Arellano M V., Leal-Noval SR, Leal M, et al. (2007) Melatonin biosynthesis in the thymus of humans and rats. Cell Mol. Life. Sci. 64: 781–790. doi:10.1007/s00018-007-6435-1.
56. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27: 189–200. doi:10.1385/ENDO:27:2:189.
57. Maldonado MD, Mora-Santos M, Naji L, Carrascosa-Salmoral MP, Naranjo MC, Calvo JR (2010) Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol. Res. 62: 282–287. doi:10.1016/j.phrs.2009.11.014.
58. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol. Life Sci. 71: 2997–3025. doi:10.1007/s00018-014-1579-2.
59. Slominski AT, Hardeland R, Zmijewski MA, Slominski RM, Reiter RJ, Paus R (2018) Melatonin: A cutaneous perspective on its production, metabolism, and functions. J. Invest. Dermatol. 138: 490–499. doi:10.1016/j.jid.2017.10.025.
60. Sanchez-Hidalgo M, de la Lastra CA, Carrascosa-Salmoral MP, Naranjo MC, Gomez-Corvera A, Caballero B, Guerrero JM (2009) Age-related changes in melatonin synthesis in rat extrapineal tissues. Exp. Gerontol. 44: 328–334. doi:10.1016/j.exger.2009.02.002.
61. Popović B, Velimirović M, Stojković T, Brajović G, De Luka SR, Milovanović I, Stefanović S, Nikolić D, Ristić-Djurović JL, Petronijević ND, et al. (2018) 111The influence of ageing on the extrapineal melatonin synthetic pathway. Exp. Gerontol. 110: 151–157. doi:10.1016/j.exger.2018.06.010.
62. Stefulj J, Hörtner M, Ghosh M, Schauenstein K, Rinner I, Wölfler A, Semmler J, Liebmann PM (2001) Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J. Pineal Res. 30: 243–247. doi:10.1034/j.1600-079x.2001.300408.x.
63. Fischer TW. (2009) Einfluss von melatonin auf die physiologie des haares. Hautarzt 60: 962–972. doi:10.1007/s00105-009-1817-y.
64. Hardeland R (2014) Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. J. Exp. Bot. 66: 627–646. doi:10.1093/jxb/eru386.
65. Hardeland R (2016) Melatonin in plants – Diversity of levels and multiplicity of functions. Front. Plant Sci. 7: 1–14. doi:10.3389/fpls.2016.00198.
66. Arnao MB, Hernández-Ruiz J (2019) Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 24: 38–48. doi:10.1016/j.tplants.2018.10.010.
67. Hardeland R, Poeggler B (2003) Non-vertebrate melatonin. J. Pineal Res. 34: 233–241.
68. Konturek SJ, Konturek PC, Brzozowski T, Bubenik GA (2007) Role of melatonin in upper gastrointestinal tract. J. Physiol. Pharmacol. 58 Suppl 6: 23–52.
69. Sánchez Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr. Med. Chem. 17: 2070–2095.
70. Xu L, Zhang W, Kwak M, Zhang LJ, Lee PCW, Jin JO (2019) Protective effect of melatonin against polymicrobial sepsis is mediated by the anti-bacterial effect of neutrophils. Front Immunol. 10: 1–11. doi:10.3389/fimmu.2019.01371.
71. Gitto E, Karbownik M, Reiter RJ, Xian Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I (2001) Effects of melatonin treatment in septic newborns. Pediatr. Res. 50: 756–760. doi:10.1203/00006450-200112000-00021.
72. Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P, Buggé C, Trimarchi G, Barberi I (2005) Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: Improvement with melatonin treatment. J. Pineal Res. 39: 287–293. doi:10.1111/j.1600-079X.2005.00251.x.
73. El Frargy M, El-Sharkawy H, Attia G (2015) Use of melatonin as an adjuvant therapy in neonatal sepsis. J. Neonatal. Perinat. Med. 8: 227–232.
74. El-Gendy F, El-Hawy M, Hassan MG (2018) Beneficial effect of melatonin in the treatment of neonatal sepsis. J. Matern. Fetal Neonatal. Med. 31: 2299–303.
75. Cardinali DP (2020) High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection. Melatonin Res. 3: 311–317. doi:10.32794/mr11250064.
76. Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, Zare Javid A (2019) The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled t. Inflammopharmacology 27: 67–76. doi:10.1007/s10787-018-0539-0.
77. Sánchez-López AL, Ortiz GG, Pacheco-Moises FP, Mireles-Ramírez MA, Bitzer-Quintero OK, Delgado-Lara DLC, Ramírez-Jirano LJ, Velázquez-Brizuela IE (2018) Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 49: 391–398. doi:10.1016/j.arcmed.2018.12.004.
78. Kücükakin B, Lykkesfeldt J, Nielsen HJ, Reiter RJ, Rosenberg J, Gögenur I (2008) Utility of melatonin to treat surgical stress after major vascular surgery - A safety study. J. Pineal Res. 44: 426–431. doi:10.1111/j.1600-079X.2007.00545.x.
79. Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C (2018) The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J. Pineal Res. 65: 1–12. doi:10.1111/jpi.12521.
80. Shafiei E, Bahtoei M, Raj P, Ostovar A, Iranpour D, Akbarzadeh S, Shahryari H, Anvaripour A, Tahmasebi R, Netticadan T, et al. (2018) Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: A randomized, open-labeled, placebo-controlled trial. Med. (United States) 97: 1–7. doi:10.1097/MD.0000000000011383.
81. Boga JA, Coto-Montes A, Rosales-Corral SA, Tan DX, Reiter RJ (2012) Beneficial actions of melatonin in the management of viral infections: A new use for this “molecular handyman”? Rev. Med. Virol. 22: 323–338. doi:10.1002/rmv.1714.
82. Ben-Nathan D, Maestroni GJM, Lustig S, Conti A (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 140: 223–230. doi:10.1007/BF01309858.
83. Bonilla E, Valero-Fuenmayor N, Pons H, Chacín-Bonilla L (1997) Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol. Life Sci. 53: 430–434. doi:10.1007/s000180050051.
84. Araghi-Niknam M, Lane L, Watson R (1998) Physical inactivity of murine retrovirus infected c57bl/6 mice is prevented by melatonin and dehydroepiandrosterone. PSEBM 219: 144–148.
85. Ellis LGC (1996) Melatonin reduces mortality from Aleutian Disease in mink (Mustela vison). J. Pineal Res. 21: 214–217. doi:10.1111/j.1600-079X.1996.tb00288.x.
86. Tuñõn MJ, Miguel BS, Crespo I, Jorquera F, Santamaría E, Alvarez M, Prieto J, González-Gallego J (2011) Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 50: 38–45. doi:10.1111/j.1600-079X.2010.00807.x.
87. Huang SH, Cao XJ, Liu W, Shi XY, Wei W (2010) Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J. Pineal Res. 48: 109–116. doi:10.1111/j.1600-079X.2009.00733.x.
88. Moreno ACR, Porchia BFMM, Pagni RL, Souza P da C, Pegoraro R, Rodrigues KB, Barros TB, Aps LR d. MM, de Araújo EF, Calich VLG, et al. (2018) The combined use of melatonin and an indoleamine 2,3-dioxygenase-1 inhibitor enhances vaccine-induced protective cellular immunity to HPV16-associated tumors. Front. Immunol. 9: 1914. doi:10.3389/fimmu.2018.01914.
89. Huang SH, Liao CL, Chen SJ, Shi LG, Lin L, Chen YW, Cheng CP, Sytwu HK, Shang ST, Lin GJ (2019) Melatonin possesses an anti-influenza potential through its immune modulatory effect. J. Funct. Foods 58: 189–198. doi:10.1016/j.jff.2019.04.062.
90. Kleszczyński K, Bilska B, Stegemann A, Flis DJ, Ziolkowski W, Pyza E, Luger TA, Reiter RJ, Böhm M, Slominski AT (2018) Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress human MNT-1 melanoma cells. IJMS 19: 3786: doi:10.3390/ijms19123786.
91. Tan D-X, Reiter RJ (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2: 44–66. doi:10.32794/mr11250011.
92. Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol. Life Sci. 74: 3883–3896. doi:10.1007/s00018-017-2615-9.
93. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, et al. (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res. 62: 1–18. doi:10.1111/jpi.12390.
94. Hardeland R (2018) Melatonin and inflammation—Story of a double-edged blade. J. Pineal Res. 65: 1–23. doi:10.1111/jpi.12525.
95. Tan DX, Hardeland R (2020) Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation : focus on COVID-19. Melatonin Res. 3:.120–143. doi:10.32794/mr11250052.
96. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, et al. (2017) Melatonin signaling in T cells: Functions and applications. J. Pineal Res. 62: 1–15. doi:10.1111/jpi.12394.
97. Majumdar S, Nandi D. (2018) Thymic atrophy: Experimental studies and therapeutic interventions. Scand J. Immunol. 87: 4–14. doi:10.1111/sji.12618.
98. Hardeland R (2019) Aging, melatonin, and the pro-and anti-inflammatory networks. Int. J. Mol. Sci. 20: 1–33. doi:10.3390/ijms20051223.
99. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506. doi:10.1016/S0140-6736(20)30183-5.
100. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, et al. (2020) Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5: 802–810. doi:10.1001/jamacardio.2020.0950.
101. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C, Reiter RJ (2020) COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 250: 117583. doi:10.1016/j.lfs.2020.117583.
102. Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, Shen B, Gong Z (2020) Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China. Int. J. Infect. Dis. 94: 128–132. doi:10.1016/j.ijid.2020.03.053.
103. Xu X, Wang G, Ai L, Shi J, Zhang J, Chen YX (2018) Melatonin suppresses TLR9-triggered proinflammatory cytokine production in macrophages by inhibiting ERK1/2 and AKT activation. Sci. Rep. 8: 15579. doi:10.1038/s41598-018-34011-8.
104. Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopatho.l 39: 529–539. doi:10.1007/s00281-017-0629-x.
105. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395: 1033–1034. doi:10.1016/S0140-6736(20)30628-0.
106. Shneider A, Kudriavtsev A, Vakhrusheva AV, Kudriavcev A, Vakhrusheva AV (2020) Can melatonin reduce the severity of COVID-19 pandemic? Int. Rev. Immunol. 19: 153–162. doi:doi: 10.1080/08830185.2020.1756284.
107. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F (2020) Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6: 1–18. doi:10.1038/s41421-020-0153-3.
108. Castillo RR, Quizon GRA, Juco MJM, E AD, Leon DG De, Punzalan FER, Guingon RBL (2020) Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization ( MAC-19 PRO ): a case series. Melatonin Res. 3: 297–310. doi:10.32794/mr11250063.
109. Acuña-Castroviejo D, Escames G, Figueira JC, de la Oliva P, Borobia AM, Acuña-Fernández C (2020) Clinical trial to test the efficacy of melatonin in COVID-19. J. Pineal Res. 69: e12683: doi:10.1111/jpi.12683.
110. Recovery Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, et al. (2020) Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N. Engl. J. Med. July: 1–11. doi:10.1056/NEJMoa2021436.
111. Biancatelli RMLC, Berrill M, Mohammed YH, Marik PE (2020) Melatonin for the treatment of sepsis: The scientific rationale. J. Thorac. Dis. 2: S54–S65. doi:10.21037/jtd.2019.12.85.
112. Nordlund JJ, Lerner AB (1977) The effects of oral melatonin on skin color and on the release of pituitary hormones. J. Clin. Endocrinol. Metab. 45: 768–774.
113. Sugden D (1983) Psychopharmacological effects of melatonin in mouse and rat. J. Pharmacol. Exp. Ther. 227: 587–591.
114. Bonanad C, García-Blas S, Tarazona-Santabalbina F, Sanchis J, Bertomeu-González V, Fácila L, Ariza A, Núñez J, Cordero A (2020) The Effect of age on mortality in patients with COVID-19: A meta-analysis with 611,583 subjects. J. Am. Med. Dir. Assoc. 21: 915–918. doi:10.1016/j.jamda.2020.05.045.
115. Simko F, Reiter RJ (2020) Is melatonin deficiency a unifying pathomechanism of high risk patients with COVID-19? Life Sci. 256: 117902. doi:10.1016/j.lfs.2020.117902.
116. Arato M, Grof E, Grof P, Laszlo I, Brown GM (1984) Reproducibility of the overnight melatonin secretion pattern in healthy men, In Advances in the Biosciences (New York: Pergamon Press), 277–282.
117. Bergiannaki JD, Soldatos CR, Paparrigopoulos TJ, Syrengelas M, Stefanis CN 1995) Low and high melatonin excretors among healthy individuals. J. Pineal Res. 18: 159–164.
118. Burgess HJ, Fogg LF (2008) Individual differences in the amount and timing of salivary melatonin secretion. PLoS One 3: e3055. doi:10.1371/journal.pone.0003055.
119. Waller KL, Mortensen EL, Avlund K, Osler M, Fagerlund B, Lauritzen M, Gammeltoft S, Jennum P (2016) Melatonin and cortisol profiles in late midlife and their association with age-related changes in cognition. Nat. Sci. Sleep 8: 47–53. doi:10.2147/NSS.S75946.
120. Knight JA, Thompson S, Raboud JM, Hoffman BR (2005) Light and exercise and melatonin production in women. Am. J. Epidemiol. 162: 1114–1122. doi:10.1093/aje/kwi327.
121. Kennaway DJ, Lushington K, Dawson D, Lack L, Van Den Heuvel C, Rogers N (1999) Urinary 6-sulfatoxymelatonin excretion and aging: New results and a critical review of the literature. J. Pineal Res. 27: 210–220. doi:10.1111/j.1600-079X.1999.tb00617.x.
122. Zhdanova I V., Wurtman RJ, Balcioglu A, Kartashov AI, Lynch HJ (1998) Endogenous melatonin levels and the fate of exogenous melatonin: Age effects. J.Gerontol. - Ser A Biol. Sci. Med. Sci. 53: 293–298. doi:10.1093/gerona/53A.4.B293.
123. Klante G, Brinschwitz T, Secci K, Wollnik F, Steinlechner S (1997) Creatinine is an appropriate reference for urinary sulphatoxymelatonin of laboratory animals and humans. J. Pineal Res. 23: 191–197. doi:10.1111/j.1600-079X.1997.tb00354.x.
124. Grof E, Grof P, Brown GM, Arato M, Lane J (1985) Investigations of melatonin secretion in man. Prog. Neuropsychopharmacol. Biol. Psychiatry 9: 609–612. doi:10.1016/0278-5846(85)90026-0.
125. Levallois P, Dumont M, Touitou Y, Gingras S, Mâsse B, Gauvin D, Kröger E, Bourdages M, Douville P (2001) Effects of electric and magnetic fields from high-power lines on female urinary excretion of 6-sulfatoxymelatonin. Am. J. Epidemiol. 154: 601–609. doi:10.1093/aje/154.7.601.
126. Talarowska M, Szemraj J, Zaja̧czkowska M, Gałecki P (2014) ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med. Sci. Monit. 20: 905–912. doi:10.12659/msm.890160.
127. Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR (2009) Circadian polymorphisms associated with affective disorders. J. Circadian. Rhythms 7: 1–10. doi:10.1186/1740-3391-7-2; 10.1186/1740-3391-7-2.
128. Galecki P, Szemraj J, Bartosz G, Bienkiewicz M, Galecka E, Florkowski A, Lewinski A, Karbownik-Lewinska M (2010) Single-nucleotide polymorphisms and mRNA expression for melatonin synthesis rate-limiting enzyme in recurrent depressive disorder. J. Pineal Res. 48: 311–317. doi:10.1111/j.1600-079X.2010.00754.x.
129. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, Gutiérrez-Zotes A, Puigdemont D, Bayés M, Crespo JM, et al. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35: 1279–89. doi:10.1038/npp.2009.230.
130. Ribelayga C, Pevet P, Simonneaux V (2000) HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 278: R1339–R1345.
131. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep MedRev 9: 11–24. doi:10.1016/j.smrv.2004.08.001.
132. Etain B, Dumaine A, Bellivier F, Pagan C, Francelle L, Goubran-botros H, Moreno S, Deshommes J, Moustafa K, Le dudal K, et al. (2012) Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum. Mol. Genet. 21: 4030–4037. doi:10.1093/hmg/dds227.
133. Braam W, van Geijlswijk I, Keijzer H, Smits MG, Didden R, Curfs LM (2010) Loss of response to melatonin treatment is associated with slow melatonin metabolism. J. Intellect. Disabil. Res. 54: 547–555. doi:10.1111/j.1365-2788.2010.01283.x.
134. Veatch OJ, Pendergast JS, Allen MJ, Leu RM, Johnson CH, Elsea SH, Malow BA (2015) Genetic variation in melatonin pathway enzymes in children with autism spectrum disorder and comorbid sleep onset delay. J. Autism. Dev. Disord 45: 100–110. doi:10.1007/s10803-014-2197-4.
135. Tordjman S, Anderson GM, Pichard N, Charbuy H, Touitou Y (2012) Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol. Psychiatry 57: 134–138.
136. Jonsson L, Anckarsater H, Zettergren A, Westberg L, Walum H, Lundstrom S, Larsson H, Lichtenstein P, Melke J (2014) Association between ASMT and autistic-like traits in children from a Swedish nationwide cohort. Psychiatr. Genet. 24: 21–27. doi:10.1097/YPG.0000000000000010.
137. Kulman G, Lissoni P, Rovelli F, Roselli MG, Brivio F, Sequeri P (2000) Evidence of pineal endocrine hypofunction in autistic children. Neuro. Endocrinol. Lett. 21: 31–34.
138. Ormstad H, Bryn V, Saugstad OD, Skjeldal O, Maes M (2018) Role of the immune system in autism spectrum disorders (ASD). CNS Neurol. Disord. Drug Targets 17: 489–495. doi:10.2174/1871527317666180706123229.
139. Batllori M, Molero-Luis M, Arrabal L, De Las Heras J, Fernandez-Ramos JA, Gutiérrez-Solana LG, Ibáñez-Micó S, Domingo R, Campistol J, Ormazabal A, et al. Urinary sulphatoxymelatonin as a biomarker of serotonin status in biogenic amine-deficient patients. Sci. Rep. (2017) 7: 1–9. doi:10.1038/s41598-017-15063-8.
140. Brown GM, Young SN, Gauthier S, Tsui H, Grota LJ (1979) Melatonin in human cerebrospinal fluid in daytime; its origin and variation with age. Life Sci. 25: 929–936. doi:10.1016/0024-3205(79)90498-3.
141. Iguchi H, Kato KI-I, Ibayashi H (1982) Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J. Clin. Endocrinol. Metab. 55: 27–29. doi:10.1210/jcem-55-1-27.
142. Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper MF (1988) Alterations in nocturnal serum melatonin levels in humans with growth and aging. J. Clin. Endocrinol. Metab. 66: 648–652.
143. Sack RL, Lewy AJ, Erb DL, Vollmer WM, Singer CM (1986) Human melatonin production decreases with age. J. Pineal Res 3: 379–388.
144. Bojkowski CJ, Arendt J (1990) Factors influencing urinary 6-sulphatoxymelatonin, a major melatonin metabolite, in normal human subjects. Clin. Endocrinol. (Oxf) 33: 435–444.
145. Haimov I, Laudon M, Zisapel N, Souroujon M, Nof D, Shlitner A, Herer P, Tzischinsky O, Lavie P (1994) Sleep disorders and melatonin rhythms in elderly people. Br. Med. J. 309: 167.
146. Yie S-M, Liu G-Y, Johansson E, Brown C, Brown GM (1992) Age-associated changes and sex differences in urinary 6 -sulphatoxymelatonin circadian rhythm in the rat. Life Sci. 50: 1235–1242. doi:10.1016/0024-3205(92)90323-H.
147. Reiter RJ, Craft CM, Johnson JEJ, King TS, Richardson BA, Vaughan GM, Vaughan MK (1981) Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology 109: 1295–1297. doi:10.1210/endo-109-4-1295.
148. Stoschitzky K, Sakotnik A, Lercher P, Zweiker R, Maier R, Liebmann P, Lindner W (1999) Influence of beta-blockers on melatonin release. Eur. J. Clin. Pharmacol. 55: 111–115. doi:10.1007/s002280050604.
149. Mayeda A, Mannon S, Hofstetter J, Adkins M, Baker R, Hu K, Nurnberger J (1998) Effects of indirect light and propranolol on melatonin levels in normal human subjects. Psychiatry Res. 81: 9–17. doi:10.1016/S0165-1781(98)00069-9.
150. Deacon S, English J, Tate J, Arendt J (1998) Atenolol facilitates light-induced phase shifts in humans. Neurosci. Lett. 242: 53–56. doi:10.1016/S0304-3940(98)00024-X.
151. Vasanthakumar N (2020) Can beta-adrenergic blockers be used in the treatment of COVID-19? Med. Hypotheses 142: 109809. doi:10.1016/j.mehy.2020.109809.
152. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, Hausvater A, Newman JD, Berger JS, Bangalore S, et al. (2020) Renin–angiotensin–aldosterone system inhibitors and risk of covid-19. N. Engl. J. Med. 382: 2441–2448. doi:10.1056/NEJMoa2008975.
153. Kennedy SH, Brown GM (1992) Effect of chronic antidepressant treatment with adinazolam and desipramine on melatonin output. Psychiatry Res. 43: 177–185. doi:10.1016/0165-1781(92)90132-M.
154. Kennedy SH, Davis BA, Brown GM, Ford CG, D’Souza J (1993) Effects of chronic brofaromine administration on biogenic amines including sulphatoxymelatonin and acid metabolites in patients with bulimia nervosa. Neurochem. Res. 18: 1281–1285. doi:10.1007/BF00975048.
155. von BC, Ursing C, Yasui N, Tybring G, Bertilsson L, Rojdmark S (2000) Fluvoxamine but not citalopram increases serum melatonin in healthy subjects-- an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur. J. Clin. Pharmacol. 56: 123–127.
156. Skene D, Bojkowski C, Arendt J (1994) Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans. Br. J. Clin. Pharmacol. 37: 181–186. doi:10.1111/j.1365-2125.1994.tb04258.x.
157. Kinsey EW, Dupuis R, Oberle M, Cannuscio CC, Hillier A (2019) Chronic disease self-management within the monthly benefit cycle of the Supplemental Nutrition Assistance Program. Public Health Nutr. 22: 2248–2259. doi:10.1017/S1368980019001071.
158. Darmon N, Drewnowski A (2015) Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 73: 643–660. doi:10.1093/nutrit/nuv027.
159. Merhout F, Doyle J (2019) Socioeconomic status and diet quality in college students. J. Nutr. Educ. Behav. 51: 1107–1112. doi:10.1016/j.jneb.2019.06.021.
160. Loopstra R, Reeves A, Tarasuk V (2019) The rise of hunger among low-income households: An analysis of the risks of food insecurity between 2004 and 2016 in a population-based study of UK adults. J. Epidemiol. Community Health 73: 668–673. doi:10.1136/jech-2018-211194.
161. Earnesty DS, Hourani M, Kerver JM, Weatherspoon LJ (2019) Dietary guidelines are not met by in-home child care providers in low-income areas. J. Nutr. Educ. Behav. 51: 1150–1158. doi:10.1016/j.jneb.2019.08.001.
162. Beck AL, Iturralde EM, Haya-Fisher J, Kim S, Keeton V, Fernandez A (2019) Barriers and facilitators to healthy eating among low-income Latino adolescents. Appetite 138: 215–222. doi:10.1016/j.appet.2019.04.004.
163. Ong MM, Ong RM, Reyes GK, Sumpaico-Tanchanco LB (2020) Addressing the COVID-19 nutrition crisis in vulnerable communities: applying a primary care perspective. J. Prim. Care Community Health (2020) 11: 2150132720946951. doi:10.1177/2150132720946951.
164. Young SN (1988) Tryptophan availability in humans: effects on mood and behavior. In Amino acid availabilty and brain function in health and disease, ed. G. Huether (Berlin/Heidelberg: Springer-Verlag), 267–274.
165. Huether G, Hajak G, Reimer A, Poeggeler B, Blömer M, Rodenbeck A, Rüther E (1992) The metabolic fate of infused l-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology (Berl) 109: 422–432. doi:10.1007/BF02247718.
166. Tan D-X, Hardeland R (2020) Estimated doses of melatonin for treating deadly virus infections: focus on COVID-19. Melatonin Res. 3: 276–296. doi:10.32794/mr11250062.
This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in Melatonin Res., copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.
In exceptional circumstances articles may be licensed differently. If you have specific condition (such as one linked to funding) that does not allow this license, please mention this to the editorial office of the journal at submission. Exceptions will be granted at the discretion of the publisher.