Treatment of ebola and other infectious diseases: melatonin “goes viral”

Melatonin versus viruses

  • Russel J Reiter Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
  • Qiang Ma Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
  • Ramaswamy Sharma Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
Keywords: hemorrhagic shock, Rho/ROCK pathway, vascular disease, inflammation, oxidative stress, immunosuppression, viral infections

Abstract

This review summarizes published reports on the utility of melatonin as a treatment for virus-mediated diseases. Of special note are the data related to the role of melatonin in influencing Ebola virus disease. This infection and deadly condition has no effective treatment and the published works documenting the ability of melatonin to attenuate the severity of viral infections generally and Ebola infection specifically are considered. The capacity of melatonin to prevent one of the major complications of an Ebola infection, i.e., the hemorrhagic shock syndrome, which often contributes to the high mortality rate, is noteworthy. Considering the high safety profile of melatonin, the fact that it is easily produced, inexpensive and can be self-administered makes it an attractive potential treatment for Ebola virus pathology.

 

 

References

1. Bizzarri M, Proietti S, Cucina A, et al. (2013) Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer cells: a review. Expert Opin. Ther. Targets 17: 1483:1496.
2. Cipolla-Neto J, Amaral FGD (2018) Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev. 39: 990-1028.
3. Chuffa LGA, Lupi LA, Cucielo MS, et al. (2019) Melatonin promotes uterine and placental health: potential molecular mechanisms. Int. J. Mol. Sci. 21: E300.
4. Xie Z, Chen F, Li WA, et al. (2017) A review of sleep disorders and melatonin. Neurol. Res. 39: 559-565.
5. Gorman MR (2019) Temporal organization of pineal melatonin signaling in mammals. Mol. Cell. Endocrinol. 503: 110687.
6. Jou MJ, Peng TI, Hsu LF, et al. (2010) Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J. Pineal Res. 48: 20-38.
7. Venegas C, Garcia JA, Escames G, et al. (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 52: 217-227.
8. He C, Wang J, Zhang Z, et al. (2016) Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 17: E939.
9. Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in cytoplasm and chloroplasts. J. Pineal Res. 61: 426-437.
10. Suofu Y, Jean-Alphonse FG, Jia J, et al. (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA. 114: E7997-E8006.
11. Zheng X, Tan DX, Allan AC, et al. (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci. Rep. 7: 41236.
12. Tan DX, Manchester LC, Liu X, et al. (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 54: 127-138.
13. Zhao D, Yu Y, Shen Y, et al. (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. 10: 249.
14. Maestroni GJ, Conti A, Pierpaoli W. (1988) Pineal melatonin, its fundamental immunoregulatory role in aging and cancer. Ann N.Y. Acad. Sci. 521: 140-148.
15. Ben-Nathan D, Maestroni GJ, Lustig S, et al. (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 140: 223-230.
16. Carocci M, Bakkali-Kassimi L (2012) The encephalomyocarditis virus. Virulence 3: 351-367.
17. Chen IY, Ichinohe T (2015) Response of host inflammasome to viral infection. Trends Microbiol. 23: 55-63.
18. Grice ID, Mariottini GL (2018) Glycans with antiviral activity from marine organisms. Results Probl. Cell. Differ. 65: 439-475.
19. Atkins GJ, Sheahan BJ (2016) Molecular determinants of alphavirus neuropathogenesis in mice. J. Gen. Virol. 97: 1283-1296.
20. Sejvar JJ. (2016) West Nile virus infection. Microbiol. Spectr. 4: E110-0021-2016.
21. Bonilla E, Valero-Fuenmayor N, Pons H, et al. (1997) Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell. Mol. Life Sci. 53: 430-434.
22. Vielma JR, Bonilla E, Chacin-Bonilla L, et al. (2014) Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic and viral infections: a review. Acta. Trop. 137: 31-38.
23. Montiel M, Bonilla E, Valero N, et al. (2015) Melatonin decreases brain apoptosis, oxidative stress, and CD200 expression and increased survival rate in mice infected by Venezuelan equine encephalitis virus. Antivir. Chem. Chemother. 24: 99-108.
24. Barba M, Fairbanks EL, Daly JM (2019) Equine viral encephalitis: prevalence, impact and management strategies. Vet. Med. 10: 99-110.
25. De Novaes OR, Iamamoto K, Silva ML, et al. (2014) Eastern equine encephalitis cases among horses in Brazil between 2005 and 2009. Arch. Virol. 159: 2615-2620.
26. Lecollinet S, Pronost S, Coulpier M, et al. (2019) Viral equine encephalitis: a growing threat to the horse population in Europe? Viruses 12: E23.
27. Ellis LC (1996) Melatonin reduces mortality from Aleutian disease in mink (Mustela vison). J. Pineal Res. 21: 214-217.
28. Castelruiz Y, Blixenkrone-Moller M, Aasted B (2005) DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 23: 1225-1231.
29. Ge W, Wang SH, Sun B, et al. (2018) Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: a view from integrated analysis of long non-coding and coding RNAs. Cell Cycle 17: 1255-1267.
30. Nguyen NT, Vierling JM (2011) Acute liver failure. Curr. Opin. Organ Transplant. 16: 289-296.
31. Laliena A, San Miguel B, Crespo I, et al. (2012) Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 53: 270-278.
32. Tunon MJ, San Miguel B, Crespo I, et al. (2013) Melatonin treatment reduces endoplasmic reticulum stress and modulates the unfolded protein response in rabbits with lethal fulminant hepatitis of viral origin. J. Pineal Res. 55: 221-228.
33. Crespo I, San Miguel B, Sanchez DI, et al. (2016) Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. J. Pineal Res. 61: 168-176.
34. Shafabakhsh F, Reiter RJ, Mirzaei H, Teymoordash SN, et al. (2019) Melatonin: a new inhibitor agent for cervical cancer treatment. J. Cell. Physiol. 234: 21670-21682.
35. Schiffman M, Doorbar J, Wentzensen N, De Sanjose S, et al. (2016) Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primers. 2: 16086.
36. Ren W, Liu G, Chen S, Yin J, et al. (2017) Melatonin signaling T cells: functions and applications. J. Pineal Res. 62: e12394.
37. Moradkhani F, Moloudizargari M, Fallah M, et al. (2020) Immunoregulatory role of melatonin in cancer. J. Cell Physiol. 235: 745-757.
38. Moreno ACR, Clara RO, Coimbra JR, Julio AR, et al. (2013) The expanding roles of
1-methyl-trypothan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells. FEBS 280: 4782-4792.
39. Moreno ACR, Porchia BFMM, Pagni RL, da Cruz Souza P, et al. (2018) The combined use of melatonin and an indoleamine 2,3-dioxygenase-1 inhibitor enhances vaccine-induced protective cellular immunity to HPV16-associated tumors. Front. Immunol. 9: 1914.
40. Yee GP, de Souza P, Khachigian LM (2013) Current and potential treatments for cervical cancer. Curr. Cancer Drug Targets 13: 205-220.
41. Koshy E, Mengting L, Kumar H, et al. (2018) Epidemiology, treatment and prevention of herpes zoster: a comprehensive review. Ind. J. Dermatol. Venereol. Leprol. 84: 251-262.
42. Saadatian-Elahi M, Bauduceau B, Del-Signore C, et al. (2019) Diabetes as a risk factor for herpes zoster in adults: a synthetic literature review. Diabetes Res. Clin. Pract. 159: 107983.
43. Nunes Oda S, Pereira Rde S. (2008) Regression of herpes viral infection symptoms using melatonin and SB-73: Comparison with Acyclovir. J. Pineal Res. 44: 373-378.
44. Holmes EC, Dudas G, Rambaut A, et al. (2016) The evolution of Ebola virus: insights from the 2013-2016 epidemic. Nature 538: 193-200.
45. Coltart CE, Lindsey B, Ghinai I, et al. (2017) The Ebola outbreak, 2013-2016: old lessons for new epidemics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372: 20160297.
46. Reed-Hranac C, Marshall JC, Monadjem A, et al. (2019) Predicting Ebola virus disease risk and the role of African bat birthing. Epidemics 29: 100365.
47. Galas A (2014) The determinants of spread of Ebola virus disease – an evidence from the past outbreak experiences. Folia Med. Cracov. 54: 17-25.
48. Merens A, Bigaillon C, Delaune D (2018) Ebola virus disease: biological and diagnostic evolution from 2014-2017. Med. Mol. Infect. 48: 83-94.
49. Nicastri E, Kobinger G, Vairo F, et al. (2019) Ebola virus disease: epidemiology, clinical features, management and prevention. Infect. Dis. Clin. North Am. 33: 953-976.
50. Tozay S, Fischer WA, Wohl DA, et al. (2019) Long-term complications of Ebola virus disease: prevalence and predictors of major symptoms and the role of inflammation. Clin. Infect. Dis. 6: 1062.
51. Uyeki TM, Erickson BR, Brown S, et al. (2016) Ebola virus persistence in semen of male survivors. Clin. Infect. Dis. 62: 1552-1555.
52. Tan DX, Korkmaz A, Reiter RJ, et al. (2014) Ebola virus disease: potential use of melatonin as a treatment. J. Pineal Res. 57: 381-134.
53. Anderson G, Maes M, Markus RP, et al. (2015) Ebola virus: melatonin as a readily available treatment option. J. Med. Virol. 87: 537-543.
54. Goeijenbier M, van Kampen JJ, Reusken CB, et al. Ebola virus disease: a review of epidemiology symptoms, treatment and pathogenesis. Neth. J. Med. 72: 442-448.
55. Murray MJ (2015) Ebola virus disease: a review of its past and present. Anesth. Analg. 121: 798-809.
56. Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez A, et al. (2013) Melatonin: buffering the immune system. Int. J. Mol. Sci. 14: 8638-8683.
57. Mortezaee K, Potes Y, Mirtavoos-Mahyari H, et al. (2019) Boosting immune system against cancer by melatonin: a Mechanistic viewpoint. Life Sci. 238: 116960.
58. Habtemariam S, Daglia M, Sureda A, et al. (2017) Melatonin and respiratory disease: a review. Curr. Top. Med. Chem. 17: 467-488.
59. Hardeland R (2018) Melatonin and inflammation – story of a double-edged blade.
J. Pineal Res. 65: e12525.
60. Reiter RJ, Mayo JC, Tan DX, et al. (2016) Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61: 253-278.
61. Tan DX, Reiter RJ (2019) Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2: 44-66.
62. Del Zar MM, Martinuzzo M, Falcon C, et al. (1991) Inhibition of human platelet aggregation and thromboxane B2 production by melatonin: correlation with plasma melatonin levels. J. Pineal Res. 11: 135-139.
63. Kornblihtt LI, Finocchiaro L, Molinas FC (1993) Inhibitory effect of melatonin on platelet activation induced by collagen and arachidonic acid. J. Pineal Res. 14:184-191.
64. Geisbert TW, Hensley LE, Jahrling PB, et al. (2003) Ebola virus infection with recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362: 1953-1958.
65. Hung MW, Kravtsov GM, Lau CF, et al. (2013) Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J. Pineal Res. 55: 247-256.
66. Nakao T, Morita H, Maemura K, et al. (2013) Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidant properties. J. Pineal Res. 55: 287-293.
67. Zhang Y, Liu X, Bai X, et al. (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res. 64: e12449.
68. Acuna-Castroviejo D, Rahim I, Acuna-Fernandez C et al. (2017) Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 74: 3965-3987.
69. Zhong J, Tan Y, Lu J, et al. (2019) Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: a novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol. 26: 101287.
70. Gitto E, Karbownik M, Reiter RJ, et al. (2001) Effects of melatonin treatment in septic newborns. Pediatr. Res. 50: 756-760.
71. Junaid A, Tang H, van Reeuwijk A, et al. (2019) Ebola hemorrhagic shock syndrome-on-a-chip. J. iSci. 2019: 100765.
72. Reardon S. (2015) “Organs-on chips” go mainstream. Nature 523: 266.
73. Tejavibulya N, Sia SK. (2016) Personalized disease models on a chip. Cell Syst. 3: 416-418.
74. Chen MB, Whisler JA, Frose J, et al. (2017) On-chip human microvascular assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12: 865-880.
75. Haase K, Kamm RD (2017) Advances in on-chip vascularization. Regen. Med. 12: 285-302.
76. Mohan GS, Ye L, Li WF, et al. (2015) Less is more: Ebola virus surface glycoprotein expression levels regulate virus production and infertility. J. Virol. 89: 1205-1217.
77. Hevia D, Gonzalez-Menendez P, Quiros-Gonzalez I, et al. (2015) Melatonin uptake through glucose transporters: a new target for melatonin inhibition of cancer. J. Pineal Res. 58: 234-250.
78. Huo X, Wang C, Yu Z, et al. (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J. Pineal Res. 62: e12390.
79. Acuna-Castoviejo D, Noguiera-Navarro MT, Reiter RJ, et al. (2018) Melatonin actions in the heart: more than a hormone. Melatonin Res. 1: 21-26.
80. Ma Q, Reiter RJ, Chen YD (2020) Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, in press.
81. Ramirez-Rodriguez G, Ortiz-Lopez L, Benitez-King G (2007) Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C. J. Pineal Res. 42: 180-190.
82. Su SC, Hsieh MJ, Yang WE, et al. (2017) Cancer metastasis: mechanisms of inhibition by melatonin. J. Pineal Res. 62: e12370.
83. Tang ST, Su H, Zhang Q, et al. (2016) Melatonin attenuates aortic endothelial permeability and arteriosclerosis in streptozotocin-induced diabetic rats: possible role of MLCK- and MLCP-dependent MLC phosphorylation. J. Cardiovasc. Pharmacol. Ther. 21: 83-92.
84. Groger M, Pasteiner W, Ignatyev G, et al. (2009) Peptide Bbeta (15-42) preserves endothelial barrier function in shock. PLoS One 4: e5391.
85. Roesner JP, Petzelbauer P, Koch A, et al. (2009) Bbeta 15-42 (FX06) reduces pulmonary, myocardial, liver and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit. Care Med. 37: 598-605.
86. Wiwanitkit V (2014) Ebola virus infection: what should be known? N. Am. J. Med. Sci. 6: 549-552.
87. Lyon GM, Mehta AK, Varkey JB, et al. (2014) Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371: 2402-2409.
88. Bah EI, Lamah ML, Fletcher T, et al. (2015) Clinical presentation of patients will Ebola virus disease in Conakry, Guinea. N. Engl. J. Med. 372: 40-47.
89. Wolf T, Kann G, Becker S, et al. (2015) Severe Ebola virus disease with vascular leakage and multiorgan failure: treatment of a patient in intensive care. Lancet 385: 1428-1435.
90. Sanchez-Barcelo E, Mediavilla M, Tan DX, et al. (2010) Clinical uses of melatonin: evaluation of human trials. Curr. Med. Chem. 17: 2070-2095.
91. Andersen LP, Gogenur I, Rosenberg J, et al. (2016) The safety of melatonin in humans. Clin. Drug Investig. 36: 169-175.
92. Cardinali DP (2019) Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection? Melatonin Res. 2: 106-132.
93. Boga JA, Coto-Montes A, Rosales-Corral SA, et al. (2012) Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”? Rev. Med. Virol. 22: 323-338.
94. Lu R, Liu Z, Shao Y, et al. (2019) Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway. Virol. J. 16: 141.
95. Zhao L, Chen L, Gu P, et al. (2019) Exogenous application of melatonin improves plant resistance to virus infections. Plant Pathol. 68: 1287-1295.
96. Chen L, Wang M, Li J, et al. (2019) Exogenous application of melatonin improved eradication of apple stem grooving virus from the infected in vitro shoots by shoot tip culture. Plant Pathol. 68: 997-1006.
97. Xin Z, Zhang X, Hu W, et al. (2019) The protective effects of melatonin or organisms against the environmental pollutants of heavy metal and non-metal toxins. Melatonin Res. 2: 99-120.
98. Arnao MB, Hernandez-Ruiz J (2019) Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res. 2: 152-168.
99. Pal P, Bhattacharjee B, Chattopadhyay A, et al. Melatonin as an armament against non-steroidal anti-inflammatory drug induced gastric injury: an overview. Melatonin Res. 2: 115-137.
Published
2020-03-10
How to Cite
[1]
Reiter, R.J., Ma, Q. and Sharma, R. 2020. Treatment of ebola and other infectious diseases: melatonin “goes viral”. Melatonin Research. 3, 1 (Mar. 2020), 43-57. DOI:https://doi.org/https://doi.org/10.32794/mr11250047.

Most read articles by the same author(s)